Formation of Composite Coatings Using Fluoropolymer Materials

2015 ◽  
Vol 245 ◽  
pp. 103-108 ◽  
Author(s):  
Konstantine Nadaraia ◽  
Dmitry Mashtalyar ◽  
Sergey Gnedenkov ◽  
Sergey Sinebryukhov

Surface modification of magnesium alloys by plasma electrolytic oxidation (PEO) and subsequent treatment with suspension of superdispersed polytetrafluoroethylene and tetrafluoroethylene telomeric solution are presented. Electrochemical, mechanical properties and wettability of obtained composite coatings were investigated. The polymer-containing coatings decrease the corrosion current and wear by orders of magnitude as compared to unprotected magnesium alloy and base PEO-coatings.

2015 ◽  
Vol 245 ◽  
pp. 97-102
Author(s):  
Dmitry V. Mashtalyar ◽  
Sergey V. Gnedenkov ◽  
Sergey L. Sinebryukhov ◽  
Igor M. Imshinetsky

Investigation results of the composite coatings obtained on MA8 magnesium alloy by plasma electrolytic oxidation (PEO) and post-treated by electrophoretic deposition of superdispersed polytetrafluoroethylene (SPTFE) are presented. Comprehensive research of electrochemical and mechanical properties of the obtained polymer-containing coatings on the magnesium alloy has been performed. It has been established that composite coatings to decrease the corrosion current density by three orders of magnitude (down to Ic = 2.0×10-10 A/cm2) and the wear by two orders of magnitude (down to 1.2×10-6 mm3/(N·m)), as compared to the basic PEO-coating.


2018 ◽  
Vol 386 ◽  
pp. 343-348
Author(s):  
Konstantine V. Nadaraia ◽  
Sergey V. Gnedenkov ◽  
Sergey L. Sinebryukhov ◽  
Dmitry V. Mashtalyar

Composite coatings have been obtained by plasma electrolytic oxidation method and subsequent treatment with fluorine-containing compound: suspension of superdispersed polytetrafluoroethylene. A method of formation of the protective coating by dipping into the suspension of organofluorine compound with subsequent heat treatment has been developed. The surface morphology of samples, their electrochemical and tribological properties, as well as wettability have been studied. Formed composite coatings reduce the corrosion current density and wear more than two orders of magnitude in comparison with the base PEO-coating. Additionally, composite layers have hydrophobic properties: for polymer-containing coatings the value of contact angle attains to 143±2°.


2018 ◽  
Vol 386 ◽  
pp. 321-325
Author(s):  
Igor M. Imshinetsky ◽  
Sergey V. Gnedenkov ◽  
Sergey L. Sinebryukhov ◽  
Dmitry V. Mashtalyar ◽  
Andrew V. Samokhin ◽  
...  

The way of protective coatings formation on MA8 magnesium alloy by plasma electrolytic oxidation (PEO) in the electrolyte containing composite zirconia-silica nanoparticles has been developed. It is shown that the coatings, which contain nanoparticles, have a significant advantage in comparison with the surface layers obtained without their use.


Author(s):  
N Sivashanmugam ◽  
KL Harikrishna ◽  
S R Koteswara Rao ◽  
N Rameshbabu ◽  
P Manojkumar

Abstract Magnesium and its alloys are extensively used in the defence, aerospace and automotive industries, owing to their excellent mechanical properties. But there is a requirement of corrosion prevention treatment before using it for applications, since the corrosion resistance of Mg alloy is poor. In this work, a study on the mechanical properties of friction stir welded ZE41 rare earth magnesium alloy thick plates of 15mm and 25mm, was carried out. A metallographic examination and mechanical tests were conducted on both the welds. Furthermore, Plasma Electrolytic Oxidation (PEO), a surface conversion treatment was carried out on both the base material as well as on the friction stir butt joints. X-ray diffraction and scanning electron microscopy analysis were carried out on all the samples, with and without coating. The coated and uncoated samples were assessed by potentiodynamic polarisation (PDP) tests and electrochemical impedance spectroscopy (EIS) to study the electrochemical corrosion behaviour. An outer porous layer and an inner dense layer, have been identified from the SEM images. From the corrosion tests results it was revealed that there was an improvement in the corrosion resistance of both the base metal as well as the weldments by the PEO coating process.


2010 ◽  
Vol 146-147 ◽  
pp. 1126-1131
Author(s):  
Yong Feng Jiang ◽  
Hua Shan Yang ◽  
Ye Feng Bao ◽  
Ying Yue Zhang

The composite coatings were prepared on AZ91D magnesium alloy by plasma electrolytic oxidation (PEO) plus cathodic electrophoretic deposition (E-coat) to improve corrosion protection. SEM observation revealed that the organic layer was integrated with PEO film by physically interlocking; Potentiodynamic polarization(E-i) measurements in 3.5% NaCl solution, copper accelerated acetate salt spray(CASS) test and immersion test were employed to evaluate corrosion principle and corrosion rate of composite coatings. It is indicated that the corrosion resistance of composite coatings was improved obviously compared to the PEO film. There is no noticeable pitting corrosion on the composite coatings after 320h CASS test. The adhesion of composite coatings was evaluated by cross-cut and pull-off test. The results show that adhesion of composite coatings can reach to level 0 and 11.3 N/mm2 as a result of the blocking effect between organic layer and PEO film.


2021 ◽  
Vol 346 ◽  
pp. 02021
Author(s):  
Dmitry V. Mashtalyar ◽  
Igor M. Imshinetskiy ◽  
Konstantine V. Nadaraia ◽  
Marina V. Sidorova ◽  
Sergey L. Sinebryukhov ◽  
...  

The properties of coatings formed on the MA8 magnesium alloy by the plasma electrolytic oxidation in electrolytes containing silicon carbide nanoparticles in concentrations of 2, 4 and 6 g/l have been investigated. It has been shown that coatings, which contain nanoparticles, have a significant advantage in microhardenss and adhesive strength in comparison with the surface layers obtained without their use.


Sign in / Sign up

Export Citation Format

Share Document