Formation, Structure and Optical Properties of Nanocrystalline BaSi2 Films on Si(111) Substrate

2015 ◽  
Vol 245 ◽  
pp. 42-48 ◽  
Author(s):  
Dmitrii Vladimirovich Fomin ◽  
Victor Leonidovich Dubov ◽  
Konstantin Nickolaevich Galkin ◽  
Dmitrii L'vovich Goroshko ◽  
Andrei Mikhailovich Maslov ◽  
...  

BaSi2 thin films were formed on Si (111) substrate by solid-phase epitaxy (SPE) (UHV deposition) using the template technology followed by vacuum annealing at temperatures of 600 °C and 750 °C. After the deposition and annealing barium silicide films were characterized by Auger electron spectroscopy, grazing incidence x-ray diffraction (GIXRD) and atomic-force microscopy (AFM). It was established that the films annealed at T = 600 °C are polycrystalline with the structure of the orthorhombic BaSi2, with grain sizes of 100-200 nm. Higher anneal temperature (T=750 °C) leads to increase of diffraction peak intensity of BaSi2 phase with grain coagulation into 300-400 nm islands. It was confirmed that nanocrystalline BaSi2 films are characterized by a direct fundamental interband transition at 1.3 eV, the second interband transition with an energy of 2.0 eV, own phonon structure with wave number peaks at 112, 119, 146 and 208 cm-1 and a high density of defect states within the band gap, which provide a noticeable subband absorption at energies of 0.8 – 1.1 eV.

2011 ◽  
Vol 493-494 ◽  
pp. 473-476
Author(s):  
E.O. Lopez ◽  
F.F. Borghi ◽  
Alexandre Mello ◽  
J. Gomes ◽  
Antonella M. Rossi

In this present work, we characterize HAp thin films deposited by dual magnetron sputtering device DMS on silicon (Si/HAp). The sputtering RF power was varied from 90 watts to 120 watts and deposition times from 60 to 180 minutes. The argon and oxygen pressure were fixed at 5.0 mTorr and 1.0 mTorr, respectively. Grazing incidence X-ray diffraction (GIXRD) from synchrotron radiation, infrared spectroscopy (FTIR) and atomic force microscopy (AFM) were used for the structural characterization. At lower deposition times, a crystalline phase with preferential orientation along apatite (002) and a disordered nanocrystalline phase were identified. The coating crystallinity was improved with the increase of the deposition time besides the sputtering power.


2013 ◽  
Vol 770 ◽  
pp. 177-180 ◽  
Author(s):  
Nirun Witit-Anun ◽  
Jakrapong Kaewkhao ◽  
Surasing Chaiyakun

Aluminum nitride (AlN) thin films have been deposited on the glass slide and Si-wafer by reactive DC magnetron sputtering technique at different sputtering power. The as-deposited films have been characterized by grazing-incidence X-ray diffraction (GIXRD), atomic force microscopy (AFM) and optical transmittance, respectively. The results show that the as-deposited films were transparent and have high transmittance in visible regions. The crystal structure from XRD results show that the as-deposited films are amorphous with low sputtering power and turn to crystal structure with high sputtering power, which showed orientation of AlN structure corresponding to the AlN(1 0 0), AlN(1 0 1) and AlN(1 1 0). The roughness values and the films thickness from AFM was varied from 0.4 nm to 3.9 nm and 199 nm to 905 nm, respectively. The optical constants namely the refractive index n and the extinction coefficient k, were determined from transmittance spectrum in the visible regions by using envelope method. For 500 nm, n and k, were in the range of 1.8 2.0 and 0.014 0.004 respectively.


2021 ◽  
Vol 127 (5) ◽  
Author(s):  
Parashurama Salunkhe ◽  
Muhammed Ali A.V ◽  
Dhananjaya Kekuda

AbstractIn this article, we report a detailed study on the influence of sputter power on physical properties of the NiO films grown by DC magnetron sputtering. Structural studies carried out by Grazing Incidence X-ray diffraction (XRD) reveals the polycrystalline nature of the films with FCC phase. The crystallographic orientation (111) plane followed by (200), (220), and (311) plane were evident from the XRD spectra. The average crystallites sizes were estimated from the spectra, and the values were compared using three different plots such as Scherrer, Williamson–Hall and size–strain plot. The surface morphology was carried out by atomic force microscopy. The deposited samples show semitransparent behavior in the visible region and the estimated band gap increased from 2.70 to 3.34 eV with an increase in sputter power. Furthermore, X-ray photoelectron spectroscopy (XPS) core-level Ni2p spectra were deconvoluted and the observed $${\text{Ni}}2{\text{p}}_{{{\text{3/2}}}}$$ Ni 2 p 3/2 , $${\text{Ni}}2{\text{p}}_{{1/2}}$$ Ni 2 p 1 / 2 domain along with their satellite’s peaks were analyzed. Most importantly, XPS quantification data and Raman spectra confirm the presence of both $${\rm{Ni}}^{2+}$$ Ni 2 + and $${\rm{Ni}}^{3+}$$ Ni 3 + states in the NiO films. The electrical properties carried at room temperature revealed that the resistivity of the film significantly increased and a mobility of ~ 84 $${\rm{cm}}^{2}{\rm{V}}^{-1}{s}^{-1}$$ cm 2 V - 1 s - 1 was obtained.


1993 ◽  
Vol 37 ◽  
pp. 189-196 ◽  
Author(s):  
B. L. Ballard ◽  
P. K. Predecki ◽  
D. N. Braski

AbstractIntrinsic stresses as a function of σ, the 1/e penetration depth were measured for a smooth, 1μm thick, fine grained, cylindrical post magnetron sputtered molybdenum film deposited on a vycor glass substrate in the dynamic deposition mode. Using grazing incidence diffraction and the Mo (321) reflection, lattice spacing profiles were determined for τ values from 200-4400 Å. The in-plane intrinsic stresses parallel and perpendicular to the post axis were determined employing the ϕ-integral method and assuming elastic isotropy. The results were related to the surface structure and composition profiles via atomic force microscopy (AFM) and auger electron spectroscopy (AES) respectively.


2020 ◽  
Vol 19 (03) ◽  
pp. 1950022
Author(s):  
S. Jainulabdeen ◽  
C. Gopinathan ◽  
A. Mumtaz Parveen ◽  
K. Mahalakshmi ◽  
K. Jeyadheepan ◽  
...  

Rod-structured ZnO has grown hydrothermally on the seed layer by varying growth time. The growth mechanism of rod-structured ZnO thin films is studied extensively with the help of characterizing tools. The preferred orientation and c/a ratio are studied with Grazing Incidence X-ray diffraction (GIXRD). The growth mechanism of ZnO rod structure is studied in detailed manner with Atomic Force Microscopy (AFM) and Field Emission Scanning Electron Microscopy (FESEM). The optical absorption and emission properties of ZnO rods are studied with respect to growth morphology. Ethanol sensing measurements are carried out at room temperature (RT). The nanostructured ZnO films show good response and sensitivity to ethanol gas at RT.


1994 ◽  
Vol 340 ◽  
Author(s):  
G. Padeletti ◽  
G. M. Ingo ◽  
P. Imperatori

ABSTRACTGa0.65In0.35As layers of a varying nominal epilayer thickness (10 – 1000 nm) have been grown by the MBE technique on GaAs (100) substrates and characterized by the combined use of atomic force microscopy (AFM) and grazing incidence X-ray diffraction (GIXD). The surface roughness and morphology have been investigated. The GIXD and AFM results show that the thinnest films are characterized by an asymmetric strain relaxation along the two <110> directions with no surface crosshatched pattern but with a misfit dislocation network. AFM images on the thickest films show also well-oriented protrusions along the [110] direction, which increase in size and become more elongated as the nominal film thickness increases.


1995 ◽  
Vol 402 ◽  
Author(s):  
H. Bender ◽  
P. Roussel ◽  
S. Kolodinski ◽  
A. Torres ◽  
R. A. Donaton ◽  
...  

AbstractTransmission electron microscopy and grazing incidence X-ray diffraction are used for the structural characterization of ultra-thin PtSi layers on (100) silicon prepared by a two-step rapid thermal annealing process. The roughness of the layers is investigated with atomic force microscopy. Two deposition techniques for the initial Pt layer are compared.


2009 ◽  
Vol 1187 ◽  
Author(s):  
Chia-Chan Hsu ◽  
Elizabeth Marie Hagerman ◽  
Hsiu-Ying Chung ◽  
Wenyuan Shi ◽  
Jenn-Ming Yang ◽  
...  

AbstractDental remineralization may be achieved by mediating the interactions between tooth surfaces with free ions and biomimetic peptides. We recently developed octuplet repeats of aspartate-serine-serine (DSS-8) peptide, which occurs in high abundance in naturally occurring proteins that are critical for tooth remineralization. In this paper, we evaluated the possible role of DSS-8 in dentin remineralization. Human dentin specimens were demineralized, exposed briefly to DSS-8 solution, and then exposed to concentrated ionic solutions that favor remineralization. Dentin nano-mechanical behaviors, hardness and elastic modulus, at various stages of treatment were determined by nanoindentation. The phase, microstructure and morphology of the resultant surfaces were characterized using grazing incidence X-ray diffraction, variable pressure scanning electron microscopy, and atomic force microscopy, respectively. Nanoindentation results show that DSS-8 remineralization effectively improves the mechanical and elastic properties of native dentin. Moreover, the hardness and elastic modulus for the DSS-8 treated dentin were significantly higher than surfaces remineralized without DSS-8.


Sign in / Sign up

Export Citation Format

Share Document