Surface Morphology of InxGa1-xAs/GaAs Relaxed Layers Characterized by Atomic Force Microscopy

1994 ◽  
Vol 340 ◽  
Author(s):  
G. Padeletti ◽  
G. M. Ingo ◽  
P. Imperatori

ABSTRACTGa0.65In0.35As layers of a varying nominal epilayer thickness (10 – 1000 nm) have been grown by the MBE technique on GaAs (100) substrates and characterized by the combined use of atomic force microscopy (AFM) and grazing incidence X-ray diffraction (GIXD). The surface roughness and morphology have been investigated. The GIXD and AFM results show that the thinnest films are characterized by an asymmetric strain relaxation along the two <110> directions with no surface crosshatched pattern but with a misfit dislocation network. AFM images on the thickest films show also well-oriented protrusions along the [110] direction, which increase in size and become more elongated as the nominal film thickness increases.

2008 ◽  
Vol 368-372 ◽  
pp. 1483-1485 ◽  
Author(s):  
Rui Hai Cui ◽  
Zhao Hua Jiang ◽  
Zhong Ping Yao

With the approach of anodic oxidation, TiO2/Ti film doped with Cu2+ was produced in H2SO4 electrolyte mixed with CuSO4. The surface morphology and the roughness of the films were studied with atomic force microscopy. The phase composition of the films was studied by X-ray diffraction. The photocatalytic activity of the films was compared through the photocatalytic degradation rate of phenol. The relations of the photocatalytic activity to the concentration of Cu2+, the microstructure and the surface roughness of the film were investigated. The results showed that Cu2+ increased the surface roughness and restrained the growth of crystal. In addition, the phenol in aqueous solution was successfully photodegraded under visible light irradiation by Cu2+-TiO2/Ti film. The composition and structure of the film affected the catalytic activity greatly. Compared with TiO2/Ti film, the recombination rate of e- and h+ of Cu2+-TiO2/Ti film was decreased.


2005 ◽  
Vol 901 ◽  
Author(s):  
Torben Clausen ◽  
Jan-Ingo Flege ◽  
Thomas Schmidt ◽  
Jens Falta

AbstractWe have investigated the Sb surfactant-mediated growth of Ge on Si(113) over the temperature range from 500°C to 700°C. The surface morphology, film thickness, interface roughness and strain state of the films have been determined by the use of scanning electron microscopy, atomic force microscopy and grazing incidence x-ray diffraction. After growth at temperatures between 500°C and 600°C smooth Ge films have been observed, which show a partial strain relaxation. However, increasing the temperature to 700°C, a rough surface with a high density of three-dimensional islands has been found.


1995 ◽  
Vol 382 ◽  
Author(s):  
Martin Pehnt ◽  
Douglas L. Schulz ◽  
Calvin J. Curtis ◽  
Helio R. Moutinho ◽  
Amy Swartzlander ◽  
...  

ABSTRACTIn this article we report the first nanoparticle-derived route to smooth, dense, phase-pure CdTe thin films. Capped CdTe nanoparticles were prepared by injection of a mixture of Cd(CH3)2, (n-C8H17)3 PTe and (n-C8H17)3P into (n-C8H17)3PO at elevated temperatures. The resultant nanoparticles 32-45 Å in diameter were characterized by x-ray diffraction, UV-Vis spectroscopy, transmission electron microscopy, thermogravimetric analysis and energy dispersive x-ray spectroscopy. CdTe thin film deposition was accomplished by dissolving CdTe nanoparticles in butanol and then spraying the solution onto SnO2-coated glass substrates at variable susceptor temperatures. Smooth and dense CdTe thin films were obtained using growth temperatures approximately 200 °C less than conventional spray pyrolysis approaches. CdTe films were characterized by x-ray diffraction, UV-Vis spectroscopy, atomic force microscopy, and Auger electron spectroscopy. An increase in crystallinity and average grain size as determined by x-ray diffraction was noted as growth temperature was increased from 240 to 300 °C. This temperature dependence of film grain size was further confirmed by atomic force microscopy with no remnant nanocrystalline morphological features detected. UV-Vis characterization of the CdTe thin films revealed a gradual decrease of the band gap (i.e., elimination of nanocrystalline CdTe phase) as the growth temperature was increased with bulk CdTe optical properties observed for films grown at 300 °C.


2013 ◽  
Vol 28 (2) ◽  
pp. 68-71 ◽  
Author(s):  
Thomas N. Blanton ◽  
Debasis Majumdar

In an effort to study an alternative approach to make graphene from graphene oxide (GO), exposure of GO to high-energy X-ray radiation has been performed. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM) have been used to characterize GO before and after irradiation. Results indicate that GO exposed to high-energy radiation is converted to an amorphous carbon phase that is conductive.


Sign in / Sign up

Export Citation Format

Share Document