rapid thermal annealing process
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 4)

H-INDEX

9
(FIVE YEARS 1)

Micromachines ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 56
Author(s):  
Lukang Wang ◽  
You Zhao ◽  
Yulong Zhao ◽  
Yu Yang ◽  
Taobo Gong ◽  
...  

Silicon carbide (SiC) has promising potential for pressure sensing in a high temperature and harsh environment due to its outstanding material properties. In this work, a 4H-SiC piezoresistive pressure chip fabricated based on femtosecond laser technology was proposed. A 1030 nm, 200 fs Yb: KGW laser with laser average powers of 1.5, 3 and 5 W was used to drill blind micro holes for achieving circular sensor diaphragms. An accurate per lap feed of 16.2 μm was obtained under laser average power of 1.5 W. After serialized laser processing, the machining depth error of no more than 2% and the surface roughness as low as 153 nm of the blind hole were measured. The homoepitaxial piezoresistors with a doping concentration of 1019 cm−3 were connected by a closed-loop Wheatstone bridge after a rapid thermal annealing process, with a specific contact resistivity of 9.7 × 10−5 Ω cm2. Our research paved the way for the integration of femtosecond laser micromachining and SiC pressure sensor chips manufacturing.


Catalysts ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 494 ◽  
Author(s):  
Sungmin Hong ◽  
Choong Kyun Rhee ◽  
Youngku Sohn

Diverse methods have been employed to synthesize MoS2 and MoSe2 catalyst systems. Herein, a combined photoelectrochemical (PEC) deposition and rapid-thermal annealing process has first been employed to fabricate MoS2 and MoSe2 thin films on Si substrates. The newly developed transition-metal dichalcogenides were characterized by scanning electron microscopy, Raman spectroscopy and X-ray photoelectron spectroscopy. PEC hydrogen evolution reaction (HER) was demonstrated in an acidic condition to show a PEC catalytic performance order of MoOx/Si < MoS2/Si << MoSe2/Si under the visible light-on condition. The HER activity (4.5 mA/cm2 at −1.0 V vs Ag/AgCl) of MoSe2/Si was increased by 4.8× compared with that under the dark condition. For CO2 reduction, the PEC activity was observed to be in the order of MoS2/Si < MoOx/Si << MoSe2/Si under the visible light-on condition. The reduction activity (0.127 mA/cm2) of MoSe2/Si was increased by 9.3× compared with that under the dark condition. The combined electrochemical deposition and rapid-thermal annealing method could be a very useful method for fabricating a thin film state catalytic system perusing hydrogen production and CO2 energy conversion.


Sensors ◽  
2018 ◽  
Vol 19 (1) ◽  
pp. 86 ◽  
Author(s):  
Md Rahaman ◽  
Usman Yaqoob ◽  
Hyeon Kim

This study reports the fast hydrogenation and dehydrogenation of ultra-thin discrete platinum/palladium (Pt/Pd) bimetal over nano-structured Ag islands grown on rough alumina substrate by a RF magnetron sputtering technique. The morphology of Ag nanoislands was optimized by RF magnetron sputtering and rapid thermal annealing process. Later, Pt/Pd bimetal (10/10) nm were deposited by RF magnetron sputtering on the nanostructured Ag islands. After the surface morphological optimization of Ag nanoislands, the resultant structure Pt/Pd@Ag nanoislands at alumina substrate showed a fast and enhanced hydrogenation and dehydrogenation (20/25 s), response magnitude of 2.3% (10,000 ppm), and a broad detection range of 500 to 40,000 ppm at the operating temperature of 120 °C. The superior hydrogenation and dehydrogenation features can be attributed to the hydrogen induced changes in the work function of Pt/Pd bimetal which enhances the coulomb scattering of percolated Pt/Pd@Ag nanoislands. More importantly, the atomic arrangements and synergetic effects of complex metal alloy interfacial structure on Ag nanoislands, supported by rough alumina substrate incorporate the vital role in accelerating the H2 absorption and desorption properties.


2018 ◽  
Vol 49 (1) ◽  
pp. 748-750 ◽  
Author(s):  
Sang-Hee Ko Park ◽  
Sanghyun Ji ◽  
Pilseong Jeong ◽  
Yunyong Nam ◽  
Jong-Heon Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document