Studies of Hydroxyapatite Thin Coating Produced by Dual RF Magnetron Sputtering for Biomedical Applications

2011 ◽  
Vol 493-494 ◽  
pp. 473-476
Author(s):  
E.O. Lopez ◽  
F.F. Borghi ◽  
Alexandre Mello ◽  
J. Gomes ◽  
Antonella M. Rossi

In this present work, we characterize HAp thin films deposited by dual magnetron sputtering device DMS on silicon (Si/HAp). The sputtering RF power was varied from 90 watts to 120 watts and deposition times from 60 to 180 minutes. The argon and oxygen pressure were fixed at 5.0 mTorr and 1.0 mTorr, respectively. Grazing incidence X-ray diffraction (GIXRD) from synchrotron radiation, infrared spectroscopy (FTIR) and atomic force microscopy (AFM) were used for the structural characterization. At lower deposition times, a crystalline phase with preferential orientation along apatite (002) and a disordered nanocrystalline phase were identified. The coating crystallinity was improved with the increase of the deposition time besides the sputtering power.

2014 ◽  
Vol 895 ◽  
pp. 500-504
Author(s):  
N. Ameera ◽  
A. Shuhaimi ◽  
S. Najwa ◽  
K.M. Hakim ◽  
M. Mazwan ◽  
...  

Nanograins zinc oxide (ZnO) withc-axis preferred orientation was deposited on glass substrates by RF magnetron sputtering. It was performed with a ZnO target with 99.999% purity at RF power of 200 W. The deposition was carried out in argon and oxygen ambient at the ratio flow-rates of 10 and 5 sccm respectively, with total deposition time of 1 hour. The films were grown atgrowth temperatures were specified at RT, 100, 200, 300, 400 and 500°C. The effects of the growth temperature on the ZnO structural property was investigated by x-ray diffraction (XRD). The best ZnO crystalline quality obtained at growth temperature, TGof 300°C was further characterized by field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM).


2015 ◽  
Vol 75 (7) ◽  
Author(s):  
Farah Lyana Shain ◽  
Azmizam Manie @ Mani ◽  
Lam Mui Li ◽  
Saafie Salleh ◽  
Afishah Alias ◽  
...  

This paper investigate the dependence of film thickness onto characteristic of Gallium doped Zinc Oxide (GZO). GZO films were deposited on a glass substrate by RF Magnetron Sputtering using GZO ceramic target with 99.99% purity. Thicknesses were altered by varying the deposition time from 10 min to 50 min meanwhile the sputtering power, argon flow and target distance were fixed in order to investigate the influence of film thickness to the growth characteristic, structural, optical properties and surface morphology of the films. Sputtering was performed with RF power of 100 watt and the argon flow was set at 10 sccm. GZO thin films on various thicknesses range from 130 nm to 460 nm were successfully deposited onto glass substrate with the crystallite grain size in range of 20.63 nm to 22.04 nm with the optical transmittance above 85 %. 


2013 ◽  
Vol 770 ◽  
pp. 177-180 ◽  
Author(s):  
Nirun Witit-Anun ◽  
Jakrapong Kaewkhao ◽  
Surasing Chaiyakun

Aluminum nitride (AlN) thin films have been deposited on the glass slide and Si-wafer by reactive DC magnetron sputtering technique at different sputtering power. The as-deposited films have been characterized by grazing-incidence X-ray diffraction (GIXRD), atomic force microscopy (AFM) and optical transmittance, respectively. The results show that the as-deposited films were transparent and have high transmittance in visible regions. The crystal structure from XRD results show that the as-deposited films are amorphous with low sputtering power and turn to crystal structure with high sputtering power, which showed orientation of AlN structure corresponding to the AlN(1 0 0), AlN(1 0 1) and AlN(1 1 0). The roughness values and the films thickness from AFM was varied from 0.4 nm to 3.9 nm and 199 nm to 905 nm, respectively. The optical constants namely the refractive index n and the extinction coefficient k, were determined from transmittance spectrum in the visible regions by using envelope method. For 500 nm, n and k, were in the range of 1.8 2.0 and 0.014 0.004 respectively.


2012 ◽  
Vol 545 ◽  
pp. 290-293
Author(s):  
Maryam Amirhoseiny ◽  
Hassan Zainuriah ◽  
Ng Shashiong ◽  
Mohd Anas Ahmad

We have studied the effects of deposition conditions on the crystal structure of InN films deposited on Si substrate. InN thin films have been deposited on Si(100) substrates by reactive radio frequency (RF) magnetron sputtering method with pure In target at room temperature. The nitrogen gas pressure, applied RF power and the distance between target and substrate were 2×10-2 Torr, 60 W and 8 cm, respectively. The effects of the Ar–N2 sputtering gas mixture on the structural properties of the films were investigated by using scanning electron microscope, energy-dispersive X-ray spectroscopy, atomic force microscopy and X-ray diffraction techniques.


2013 ◽  
Vol 873 ◽  
pp. 426-430
Author(s):  
Xian Wu Xiu ◽  
Li Xu ◽  
Cheng Qiang Zhang

Molybdenum-doped zinc oxide (MZO) films have been prepared by RF magnetron sputtering on glass substrates at room temperature. The structural, electrical and optical properties of the films vary with sputtering power from 15 W to 70 W are investigated. X-ray diffraction (XRD) analysis reveals that all the films are polycrystalline with the hexagonal structure and have a preferred orientation along thecaxis perpendicular to the substrate. The resistivity increases with the increase of the RF power. The lowest resistivity achieved is 5.4×10-3Ω cm at a RF power of 15 W with a Hall mobility of 11 cm2V-1s-1and a carrier concentration of 1.1×1019cm-3. The average transmittance drops from 85% to 81% in the visible range and the optical band gap decreases from 3.26 eV to 3.19 eV with the increase of the RF power.


2015 ◽  
Vol 14 (01n02) ◽  
pp. 1460027 ◽  
Author(s):  
Jiaxiong Wu ◽  
Wei Cai ◽  
Guangyi Shang

LiFePO 4 films were deposited on Au / Si substrate by radio-frequency magnetron sputtering. The effect of annealing on the crystallization and morphology of LiFePO 4 thin film has been investigated. X-ray diffraction revealed that the films through annealing were well crystallized compared with as-deposited films. The surface morphology of the thin film was also observed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Electrochemical tests in 1M Li 2 SO 4 showed that the annealed thin film in 500°C exhibits larger Li -ion diffusion coefficient (3.46 × 10-7 cm2s-1) than as-deposited film and powder. Furthermore, cyclic voltammetry demonstrate a well-defined lithium intercalation/deintercalation reaction at around 0.45 V versus SCE (i.e., 3.6 V versus Li +/ Li ), suggesting that the annealed LiFePO 4 thin film is a promising candidate cathode film for lithium microbatteries.


2013 ◽  
Vol 20 (01) ◽  
pp. 1350008 ◽  
Author(s):  
M. AMIRHOSEINY ◽  
Z. HASSAN ◽  
S. S. NG ◽  
G. ALAHYARIZADEH

The structure and optical properties of InN thin film grown on 6H-SiC by reactive radio frequency magnetron sputtering were investigated. X-ray diffraction measurement shows that the deposited InN film has (101) preferred growth orientation and wurtzite structure. Atomic force microscopy results reveal smooth surface with root-mean-square roughness around 3.3 nm. One Raman-active optical phonon of E2(high) and two Raman- and infrared-active modes of A1(LO) and E1(TO) of the wurtzite InN are clearly observed at 488.7, 582.7 and 486 cm-1, respectively. These results leading to conclude that the wurtzite InN thin film with (101) preferred growth orientation was successfully grown on 6H-SiC substrate.


2014 ◽  
Vol 1053 ◽  
pp. 325-331
Author(s):  
Yang Zhou ◽  
Hong Fang Zheng ◽  
Guang Zhao ◽  
Man Li ◽  
Bao Ting Liu

ZnO thin film has been fabricated on sapphire substrate (0001) using RF magnetron sputtering at room temperature. The influence of sputtering power ranging from 10 W to 70 W on the microstructural and optical properties of ZnO films is investigated by atomic force microscopy (AFM), X-ray diffraction (XRD), ultraviolet-visible spectrophotometer. The AFM results show that with the increase of sputtering power, the size of ZnO crystalline increases first, then decrease and the maximum grain size occurs at 50 W. The XRD measurements indicate that the ZnO films with wurtzite structure are highly c-axis orientation and the film fabricated at 50 W has the best crystalline quality. Optical transmission spectra of the ZnO samples demonstrate that the ZnO film obtained at 50 W has the higher average transmission (above 90%) in the visible-light region and its optical band gap is 3.26 eV.


2013 ◽  
Vol 760-762 ◽  
pp. 776-779
Author(s):  
Shuang Li ◽  
Ming Chen ◽  
Feng Xiang Wang

In the present work, we investigated the effect of sputtering power on the structural and optical properties of ZnO films by radio frequency (rf) magnetron sputtering. Atom force microscopy (AFM), X-ray diffraction (XRD) and Prism coupling method were adopted to investigate the structure and optical properties of ZnO thin films deposited by sputtering powers in the range from 100~150W. XRD and AFM results shown that ZnO films with high c-axis preferred orientation crystalline structures have been successfully deposited under higher sputtering power condition. Moreover, it was also found that the indexes refractive of the films obtained by higher sputtering power are less than that of the bulk ZnO materials, which is closer to Crystal Refractive index.


2007 ◽  
Vol 280-283 ◽  
pp. 1309-1312 ◽  
Author(s):  
Hui Dong Tang ◽  
Shou Hong Tan ◽  
Zheng Ren Huang

Amorphous SiC coatings were deposited by RF magnetron sputtering from a sintered SiC target onto Si(100) substrate at room temperature. The influence of RF power on the surface morphology and the RMS surface roughness of the resulting SiC coatings was studied by using atomic force microscopy. Two types of surface morphologies were obtained. The corresponding forming mechanisms were also discussed.


Sign in / Sign up

Export Citation Format

Share Document