Numerical Modeling of Thermal Field Distribution during Friction Stir Welding (FSW) of Dissimilar Materials

2016 ◽  
Vol 254 ◽  
pp. 261-266
Author(s):  
Bogdan Radu ◽  
Cosmin Codrean ◽  
Radu Cojocaru ◽  
Cristian Ciucă

Friction Stir Welding (FSW) is an innovative solid state welding process, relatively new in industry, which allow welding of two or more materials which have very different properties, particularly thermal properties as fusion temperature, thermal expansion coefficient, specific heat and thermal conduction and have a predisposition to form intermetallic brittle phases, neither one of the components to be weld reach to the melting point. Being a solid state welding process temperature field is very important for the quality of the welded joint, and a lot of researches focused on this topic. This paper presents some results in modeling and estimation of thermal field developed during FSW of dissimilar joints, using Finite Element Analysis. Numerical modeling of thermal field allows engineers to predict, in advance, the evolution of temperature and to estimate the behavior of the welded materials during the welding process. This will reduce significantly the time and number of experiments that have to be carried out, in the process of establishing a good FSW technology, as well as reducing significantly the cost of the tests.

2016 ◽  
Vol 78 (6-9) ◽  
Author(s):  
Siti Norazila Zahari ◽  
Mohd Shahrir Mohd Sani ◽  
Nurulakmar Abu Husain ◽  
Mahadzir Ishak ◽  
Izzuddin Zaman

Friction stir welding (FSW) is a welding process that widely used as a solid state joining process for producing welded structure of similar and dissimilar materials such as aluminum alloy, magnesium etc. FSW process has expanded rapidly in industries including aerospace, automotive and maritime due to several advantages compared to other fusion welding. In this paper, experimental modal analysis (EMA) and normal mode finite element analysis (FEA) of the FSW welded joint structure of materials AA6061 and AA7075 will be carried out to identify dynamic properties. Rigid Body Element (RBE2) in MSC NASTRAN/PATRAN is used to model the welds and their compatibility for representing FSW welded structure also being identified. Model updating is performed to minimize the discrepancy between EMA and FEA. Model updating will be acted as an optimization method and is being presented using the structural optimization capability. Finite model updating could be done in individual components and welded structure. RBE2 connecting element can be used to represent friction stir welding with good accuracy. 


2013 ◽  
Vol 774-776 ◽  
pp. 1155-1159 ◽  
Author(s):  
Xiao Cong He

Friction stir welding (FSW) is a solid-state welding process where no gross melting of the material being welded takes place. Numerical modelling of the FSW process can provide realistic prediction of the thermo-mechanical behaviour of the process. Latest literature relating to finite element analysis (FEA) of thermo-mechanical behaviour of FSW process is reviewed in this paper. The recent development in thermo-mechanical modelling of FSW process is described with particular reference to two major factors that influence the performance of FSW joints: material flow and temperature distribution. The main thermo-mechanical modelling used in FSW process are discussed and illustrated with brief case studies from the literature.


2011 ◽  
Vol 189-193 ◽  
pp. 3266-3269 ◽  
Author(s):  
Yu Hua Chen ◽  
Peng Wei ◽  
Quan Ni ◽  
Li Ming Ke

Titanium alloy TC1 and Aluminum alloy LF6 were jointed by friction stir welding (FSW), and the influence of process parameters on formation of weld surface, cross-section morphology and tensile strength were studied. The results show that, Titanium and Aluminum dissimilar alloy is difficult to be joined by FSW, and some defects such as cracks and grooves are easy to occur. When the rotational speed of stir head(n) is 750r/min and 950r/min, the welding speed(v) is 118mm/min or 150mm/min, a good formation of weld surface can be obtained, but the bonding of titanium/aluminum interface in the cross-section of weld joint is bad when n is 750r/min which results in a low strength joint. When n is 950r/min and v is 118mm/min,the strength of the FSW joint of Titanium/Aluminum dissimilar materials is 131MPa which is the highest.


2018 ◽  
Vol 178 ◽  
pp. 03003 ◽  
Author(s):  
Ana Bosneag ◽  
Marius Adrian Constantin ◽  
Eduard Niţu ◽  
Monica Iordache

Friction Stir Welding, abbreviated FSW is a new and innovative welding process. This welding process is increasingly required, more than traditional arc welding, in industrial environment such us: aeronautics, shipbuilding, aerospace, automotive, railways, general fabrication, nuclear, military, robotics and computers. FSW, more than traditional arc welding, have a lot of advantages, such us the following: it uses a non-consumable tool, realise the welding process without melting the workpiece material, can be realised in all positions (no weld pool), results of good mechanical properties, can use dissimilar materials and have a low environmental impact. This paper presents the results of experimental investigation of friction stir welding joints to three dissimilar aluminium alloy AA2024, AA6061 and AA7075. For experimenting the value of the input process parameters, the rotation speed and advancing speed were kept the same and the position of plates was variable. The exit date recorded in the time of process and after this, will be compared between them and the influence of position of plate will be identified on the welding seams properties and the best position of plates for this process parameters and materials.


Author(s):  
Mohd Ridha Muhamad ◽  
Sufian Raja ◽  
Mohd Fadzil Jamaludin ◽  
Farazila Yusof ◽  
Yoshiaki Morisada ◽  
...  

Abstract Dissimilar materials joining between AZ31 magnesium alloy and SPHC mild steel with Al-Mg powder additives were successfully produced by friction stir welding process. Al-Mg powder additives were set in a gap between AZ31 and SPHC specimen's butt prior to welding. The experiments were performed for different weight percentages of Al-Mg powder additives at welding speeds of 25 mm/min, 50 mm/min and 100 mm/min with a constant tool rotational speed of 500 rpm. The effect of powder additives and welding speed on tensile strength, microhardness, characterization across welding interface and fracture morphology were investigated. Tensile test results showed significant enhancement of tensile strength of 150 MPa for 10% Al and Mg (balance) powder additives welded joint as compared to the tensile strength of 125 MPa obtained for welded joint without powder additives. The loss of aluminium in the alloy is compensated by Al-Mg powder addition during welding under a suitable heat input condition identified by varying welding speeds. Microstructural analysis revealed that the Al-Mg powder was well mixed and dispersed at the interface of the joint at a welding speed of 50 mm/min. Intermetallic compound detected in the welding interface contributed to the welding strength.


2015 ◽  
Vol 1119 ◽  
pp. 597-600
Author(s):  
Hyun Ho Jung ◽  
Ye Rim Lee ◽  
Jong Hoon Yoon ◽  
Joon Tae Yoo ◽  
Kyung Ju Min ◽  
...  

Since solid state welded joint is formed from an intimate contact between two metals at temperatures below the melting point of the base materials, the structural integrity of welding depends on time, temperature, and pressure. This paper provides some of examples of friction stir welding and diffusion welding process for aerospace components. Friction stir welding process of AA2195 was developed in order to study possible application for a large fuel tank. Massive diffusion welding of multiple titanium sheets was performed and successful results were obtained. Diffusion welding of dissimilar metals of copper and stainless steel was necessary to manufacture a scaled combustion chamber. Diffusion welding of copper and steel was performed and it is shown that the optimum condition of diffusion welding is 7MPa at 890°C, for one hour. It is shown that solid state welding processes can be successfully applied to fabricate lightweight aerospace parts.


2017 ◽  
Author(s):  
R. Sandeep ◽  
D. Sudhakara ◽  
G. Prasanthi

Friction stir welding (FSW) is a solid state welding process used for welding similar and dissimilar materials. The process is widely used because it does not have common problems such as solidification and liquefaction cracking associated with the fusion welding techniques. The objective of the present research is to find the best combination of friction stir welding process parameters to join aluminium 5052 and 6061 alloy materials. The combination of process parameters is helpful to improve ultimate tensile strength, yield strength, percentage of elongation and hardness of welded joint. To achieve the research objective taguchi based grey analysis was used. The optimum process parameters were found be at rotational speed is 1400 rpm, transverse speed of 100 mm/min and axial force is at 11 KN.


Author(s):  
Akshansh Mishra

IMicro friction stir welding (µFSW) process is mainly adapted from the Friction Stir Welding Process. This process is mainly used for joining dissimilar materials. Micro friction stir welding (µFSW) find its applications in thin walled structures, electrical, electronic and micro-mechanical assemblies. The significant challenges are faced when we downscale to achieve µFSW. This paper addresses the current state of the understanding and development of Micro friction stir welding. This paper further outlines the results achieved after Micro friction stir processing of Aluminium alloys, Copper alloys and Zinc alloys.


2018 ◽  
Vol 1146 ◽  
pp. 38-43
Author(s):  
Ana Boşneag ◽  
Marius Adrian Constantin ◽  
Eduard Niţu ◽  
Cristian Ciucă

Friction Stir Welding, abbreviated FSW is an innovative joining process. The FSW is a solid-state welding process with a lot of advantages comparing to the traditional arc welding, such as the following: it uses a non-consumable tool, it results of good mechanical properties, it can use dissimilar materials and it have a low environmental impact. First of all, the FSW process was developed to join similar aluminum plates, and now, the technology was developed and the FSW process is used to weld large types of materials, similar or dissimilar. In this paper it is presented an experimental study and the results of it, which includes the welding of three dissimilar aluminum alloy, with different chemical and mechanical properties. This three materials are: AA2024, AA6061 and AA7075. The welding joints and the welding process were analyzed considering: process temperature, micro-hardness, macrostructure and microstructure.


Sign in / Sign up

Export Citation Format

Share Document