Microstructure-Based Assessment of the Corrosion Fatigue Behavior of the Creep-Resistant DieMag422 and AE42 Magnesium Alloys

2016 ◽  
Vol 258 ◽  
pp. 530-533
Author(s):  
Martin Klein ◽  
Patrick Buhr ◽  
Frank Walther

Magnesium alloys offer high potential for lightweight constructions, e.g. in automotive applications. However, their application range is limited due to their low corrosion resistance. In the present study, the influence of corrosion on the microstructure and the depending mechanical properties under cyclic loading were characterized for the creep-resistant DieMag422 (Mg4Al2Ba-2Ca) and AE42 magnesium alloys. In this context, fatigue properties in distilled water and sodium chloride solutions were assessed in constant amplitude tests. The results were correlated with corrosion properties of the alloys, which were evaluated by immersion tests. Corrosion-and deformation-induced microstructural changes were observed by light and scanning electron microscopy (SEM), yielding a structure-property-relationship for a comprehensive understanding of mechanical and corrosive deterioration mechanisms.

2018 ◽  
Vol 941 ◽  
pp. 1728-1733
Author(s):  
Martin Klein ◽  
Frank Walther

The corrosion fatigue behaviors of the creep-resistant magnesium alloys DieMag422 and AE42 were characterized by means of constant amplitude tests in sodium chloride solutions using corrosion potential and strain measurements. Characteristic microstructural deterioration and cracking processes in low and high cycle fatigue regime could be monitored on the basis of characteristic corrosion potential responses, which were investigated in detail by means of combined analysis of corrosion potential and total strain oscillations.


2017 ◽  
Vol 69 (1) ◽  
pp. 47-51
Author(s):  
Liviu Marsavina ◽  
Lucian Rusu ◽  
Dan Andrei Șerban ◽  
Radu Marcel Negru ◽  
Anghel Cernescu

Abstract The use of magnesium alloys in the automotive industry increased in the last decade because of their low weight and relative good mechanical properties. However, the variable loading conditions require a good fatigue behavior. This paper summaries the fatigue properties of magnesium alloys and presents new fatigue curve results for die cast AM50 magnesium alloy.


Author(s):  
Aron Huckaba ◽  
sadig aghazada ◽  
iwan zimmermann ◽  
giulia grancini ◽  
natalia gasilova ◽  
...  

The straightforward synthesis and photophysical properties of a new series of heteroleptic Iridium (III) bis(2-arylimidazole) picolinate complexes is reported. Each complex has been characterized by NMR, UV-Vis, cyclic voltammetry, and the emissive properties of each is described. By systematically modifying first the cyclometallating aryl group on the arylimidazole ligand and then the picolinate ligand, the ramifications of ligand modification in these complexes was better understood through the construction of a structure-property relationship.


2017 ◽  
Author(s):  
Aron Huckaba ◽  
sadig aghazada ◽  
iwan zimmermann ◽  
giulia grancini ◽  
natalia gasilova ◽  
...  

The straightforward synthesis and photophysical properties of a new series of heteroleptic Iridium (III) bis(2-arylimidazole) picolinate complexes is reported. Each complex has been characterized by NMR, UV-Vis, cyclic voltammetry, and the emissive properties of each is described. By systematically modifying first the cyclometallating aryl group on the arylimidazole ligand and then the picolinate ligand, the ramifications of ligand modification in these complexes was better understood through the construction of a structure-property relationship.


2015 ◽  
Vol 57 (2) ◽  
pp. 126-130
Author(s):  
Dorothea Amberger ◽  
Tina Blickle ◽  
Heinz Werner Höppel ◽  
Mathias Göken

2008 ◽  
Vol 59 (11) ◽  
Author(s):  
Adrian Beteringhe ◽  
Ana Cristina Radutiu ◽  
Titus Constantinescu ◽  
Luminita Patron ◽  
Alexandru T. Balaban

In a preceding study, the molecular hydrophobicity (RM0) was determined experimentally from reverse-phase thin-layer chromatography data for several substituted phenols and 2-(aryloxy-a-acetyl)-phenoxathiin derivatives, obtained from the corresponding phenoxides and 2-(a-bromoacetyl)-phenoxathiin. QSPR correlations for RM0 were explored using four calculated molecular descriptors: the water solubility parameter (log Sw), log P, the Gibbs energy of formation (DGf), and the aromaticity index (HOMA). Triparametric correlations do not improve substantially the biparametric correlation of RM0 in terms of log Sw and HOMA.


2020 ◽  
Vol 27 (28) ◽  
pp. 4584-4592 ◽  
Author(s):  
Avik Khan ◽  
Baobin Wang ◽  
Yonghao Ni

Regenerative medicine represents an emerging multidisciplinary field that brings together engineering methods and complexity of life sciences into a unified fundamental understanding of structure-property relationship in micro/nano environment to develop the next generation of scaffolds and hydrogels to restore or improve tissue functions. Chitosan has several unique physico-chemical properties that make it a highly desirable polysaccharide for various applications such as, biomedical, food, nutraceutical, agriculture, packaging, coating, etc. However, the utilization of chitosan in regenerative medicine is often limited due to its inadequate mechanical, barrier and thermal properties. Cellulosic nanomaterials (CNs), owing to their exceptional mechanical strength, ease of chemical modification, biocompatibility and favorable interaction with chitosan, represent an attractive candidate for the fabrication of chitosan/ CNs scaffolds and hydrogels. The unique mechanical and biological properties of the chitosan/CNs bio-nanocomposite make them a material of choice for the development of next generation bio-scaffolds and hydrogels for regenerative medicine applications. In this review, we have summarized the preparation method, mechanical properties, morphology, cytotoxicity/ biocompatibility of chitosan/CNs nanocomposites for regenerative medicine applications, which comprises tissue engineering and wound dressing applications.


2018 ◽  
Vol 21 (7) ◽  
pp. 533-542 ◽  
Author(s):  
Neda Ahmadinejad ◽  
Fatemeh Shafiei ◽  
Tahereh Momeni Isfahani

Aim and Objective: Quantitative Structure- Property Relationship (QSPR) has been widely developed to derive a correlation between chemical structures of molecules to their known properties. In this study, QSPR models have been developed for modeling and predicting thermodynamic properties of 76 camptothecin derivatives using molecular descriptors. Materials and Methods: Thermodynamic properties of camptothecin such as the thermal energy, entropy and heat capacity were calculated at Hartree–Fock level of theory and 3-21G basis sets by Gaussian 09. Results: The appropriate descriptors for the studied properties are computed and optimized by the genetic algorithms (GA) and multiple linear regressions (MLR) method among the descriptors derived from the Dragon software. Leave-One-Out Cross-Validation (LOOCV) is used to evaluate predictive models by partitioning the total sample into training and test sets. Conclusion: The predictive ability of the models was found to be satisfactory and could be used for predicting thermodynamic properties of camptothecin derivatives.


Tetrahedron ◽  
2010 ◽  
Vol 66 (45) ◽  
pp. 8729-8733 ◽  
Author(s):  
M.S. Wrackmeyer ◽  
M. Hummert ◽  
H. Hartmann ◽  
M.K. Riede ◽  
K. Leo

Sign in / Sign up

Export Citation Format

Share Document