New Methodology for the Life Time Prediction of Wear Parts in the Mechatronic Systems

2017 ◽  
Vol 260 ◽  
pp. 194-201
Author(s):  
Oskars Linins ◽  
Irina Boiko ◽  
Janis Lungevics ◽  
Armands Leitans

This paper is devoted to the elaboration and verification of the new methodology for the life time prediction of wear parts in the mechatronic systems. The methodology is based on the using of the 3D surface texture parameters instead of 2D roughness parameters for more precise prediction of the life time of machine parts.Experimental testing of proposed methodology for the wear parts of linear motion modules of mechatronic system was done using 3D profilometry, pin-on-disc tribological testing for determination dynamic friction coefficient, slidability and static friction coefficient measurements. The new approach for life time prediction is based on using following 3D texture parameters: Sa, Sq, Str, Rsm1 and Rsm2. It is established, that the amplitude and spatial parameters (Sa and Str (Rsm1) accordingly) have a most significant influence on the static and dynamic friction coefficient as well as on the sliding properties. It can be assumed, that for wear parts and for improving sliding properties the surfaces with less Sa and bigger Rsm1 are recommended.Within the Ti-based multi-layer PVD coatings the best prognosis for the life time was achieved for the samples with multi-layer Ti-TiN-Al PVD coating. Proposed methodology is acceptable for use in practice of engineering calculation, in design etc.

Author(s):  
Xiangzhen Xue ◽  
Jipeng Jia ◽  
Qixin Huo ◽  
Junhong Jia

To investigate the fretting wear of involute spline couplings in aerospace, rack-plane spline couplings rather than the conventional involute spline couplings in aerospace were used to conduct tribological experiments, and it was assumed that the rack-plane spline couplings exhibit consistent contact stress with the real involute spline couplings in aerospace. The relationships among the static friction coefficient, dynamic friction coefficient, and fretting friction coefficient were established via tribological experiments, as well as the fretting-wear mechanism of the rack-plane spline couplings was examined. A fretting-wear estimation model based on the fretting-wear mechanism was developed. By applying the modified Archard equation and Arbitrary Lagrangian–Eulerian adaptive, mesh smoothing algorithm of Abacus was used. According to our experimental results, the fretting wear of the rack-plane spline couplings consisted primarily of abrasive wear, oxidative wear, and adhesive wear. For both, lubrication and non-lubrication settings, the fretting friction coefficient of 18CrNi4A steel (0.27) fluctuated between 0.12 (dynamic friction coefficient) and 0.35 (static friction coefficient). The fretting-wear results estimated via numerical prediction were consistent with the experimental results. When sm (vibration amplitude) was 20, 35, and 50 µm, the most difference in the fretting wear between the experimental results and numerical estimation was 0.001, 0.0007, and 0.001 mm, respectively. Therefore, the proposed model provides a method for accurate estimation of the fretting-wear. Additionally, the model contributes to the precise design of involute spline couplings in aerospace.


2013 ◽  
Vol 401-403 ◽  
pp. 320-325
Author(s):  
Ming Ming Qiu ◽  
Han Zhao ◽  
Fa Ming Sha

Introduce the dynamic friction coefficient of clutch friction plate. Establish Mathematical model of starting process, carried out vibration analysis for frictional sliding process systematically, validated the analysis using Matlab/simulink software. Meanwhile, compared with the starting process by static friction coefficient. The results show that using dynamic friction coefficient to analyse starting process conforms to the actual working condition.


2021 ◽  
Vol 69 (3) ◽  
Author(s):  
Gianluca Costagliola ◽  
Tobias Brink ◽  
Julie Richard ◽  
Christian Leppin ◽  
Aude Despois ◽  
...  

AbstractWe report experimental measurements of friction between an aluminum alloy sliding over steel with various lubricant densities. Using the topography scans of the surfaces as input, we calculate the real contact area using the boundary element method and the dynamic friction coefficient by means of a simple mechanistic model. Partial lubrication of the surfaces is accounted for by a random deposition model of oil droplets. Our approach reproduces the qualitative trends of a decrease of the macroscopic friction coefficient with applied pressure, due to a larger fraction of the micro-contacts being lubricated for larger loads. This approach relates direct measurements of surface topography to realistic distributions of lubricant, suggesting possible model extensions towards quantitative predictions.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Qin Lian ◽  
Chunxu Yang ◽  
Jifei Cao

The transition between static and kinetic frictions of steel/shale pairs has been studied. It was found that the coefficient of friction decreased exponentially from static to dynamic friction coefficient with increasing sliding displacement. The difference between static and dynamic friction coefficients and the critical distance Dc under the dry friction condition is much larger than that under the lubricated condition. The transition from static to dynamic friction coefficient is greatly affected by the normal load, quiescent time, and sliding velocity, especially the lubricating condition. Maintaining continuous lubrication of the contact area by the lubricant is crucial to reduce or eliminate the stick-slip motion. The results provide an insight into the transition from static to dynamic friction of steel/shale pairs.


Author(s):  
Xi Shi ◽  
Andreas A. Polycarpou

As the size of contacting and sliding tribosystems decrease, intermolecular or adhesive forces become significant partly due to nanometer size surface roughness. The presence of adhesion has a major influence on the interfacial contact and friction forces as well as the microtribosystem dynamics and thus influences the overall dynamic friction behavior. In this paper, a dynamic friction model that explicitly includes adhesion, interfacial damping and the system dynamics for realistic rough surfaces was developed. The results show that the amplitude and mean value of the time varying normal contact and friction forces increase in the presence of adhesion under continuous contact conditions. Also, due to the attractive nature of adhesion, its presence delays or eliminates the occurrence of loss of contact. Furthermore, in the presence of significant adhesion, dynamic friction behavior is significantly more complicated compared to the no adhesion case, and the dynamic friction coefficient predictions may be misleading. Thus, it is more appropriate to discuss dynamic friction force instead of dynamic friction coefficient under dynamic conditions.


Sign in / Sign up

Export Citation Format

Share Document