scholarly journals Experimental Study on the Transition between Static and Kinetic Frictions of Steel/Shale Pairs

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Qin Lian ◽  
Chunxu Yang ◽  
Jifei Cao

The transition between static and kinetic frictions of steel/shale pairs has been studied. It was found that the coefficient of friction decreased exponentially from static to dynamic friction coefficient with increasing sliding displacement. The difference between static and dynamic friction coefficients and the critical distance Dc under the dry friction condition is much larger than that under the lubricated condition. The transition from static to dynamic friction coefficient is greatly affected by the normal load, quiescent time, and sliding velocity, especially the lubricating condition. Maintaining continuous lubrication of the contact area by the lubricant is crucial to reduce or eliminate the stick-slip motion. The results provide an insight into the transition from static to dynamic friction of steel/shale pairs.

2021 ◽  
Vol 29 (3) ◽  
Author(s):  
Emad Kamil Hussein ◽  
Kussay Ahmed Subhi ◽  
Tayser Sumer Gaaz

The present paper investigates experimentally effect of applied load and different velocity on the coefficient of friction between two interacting surfaces (human skin and Ultra-high-molecular-weight polyethylene (UHMW- polyethylene) at static and dynamic friction. It is possible to conclude specific point based on the above practical part and frictional analysis of this investigation as the most important mechanical phenomenon was creep has been observed a stick time interval where the static friction force is significantly increased during this stroke. The analytical model for stick-slip of skin and UHMWPE is proposed. The difference between static and kinetic friction defines the amplitude of stick-slip phenomena. The contact pressure, the sliding velocity, and rigidity of system determine the stability conditions of the movement between skin and UHMWPE. Experiments were carried out by developing a device (friction measurement). Variations of friction coefficient during the time at different normal load 4.6 and 9.2 N and low sliding velocity 4, 5, 6 and 7 mm/min were experimentally investigated. The results showed that the friction coefficient varied with the normal load and low sliding velocity. At static friction, the coefficient of friction decreased when the time increases, whereas, at dynamic friction, the coefficient of friction decreased when the time increased at normal load 4.6 and 9.2 N.


2021 ◽  
Vol 69 (3) ◽  
Author(s):  
Gianluca Costagliola ◽  
Tobias Brink ◽  
Julie Richard ◽  
Christian Leppin ◽  
Aude Despois ◽  
...  

AbstractWe report experimental measurements of friction between an aluminum alloy sliding over steel with various lubricant densities. Using the topography scans of the surfaces as input, we calculate the real contact area using the boundary element method and the dynamic friction coefficient by means of a simple mechanistic model. Partial lubrication of the surfaces is accounted for by a random deposition model of oil droplets. Our approach reproduces the qualitative trends of a decrease of the macroscopic friction coefficient with applied pressure, due to a larger fraction of the micro-contacts being lubricated for larger loads. This approach relates direct measurements of surface topography to realistic distributions of lubricant, suggesting possible model extensions towards quantitative predictions.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 180
Author(s):  
Donya Ahmadkhaniha ◽  
Lucia Lattanzi ◽  
Fabio Bonora ◽  
Annalisa Fortini ◽  
Mattia Merlin ◽  
...  

The purpose of the study is to assess the influence of SiC particles and heat treatment on the wear behaviour of Ni–P coatings when in contact with a 100Cr6 steel. Addition of reinforcing particles and heat treatment are two common methods to increase Ni–P hardness. Ball-on-disc wear tests coupled with SEM investigations were used to compare as-plated and heat-treated coatings, both pure and composite ones, and to evaluate the wear mechanisms. In the as-plated coatings, the presence of SiC particles determined higher friction coefficient and wear rate than the pure Ni–P coatings, despite the limited increase in hardness, of about 15%. The effect of SiC particles was shown in combination with heat treatment. The maximum hardness in pure Ni–P coating was achieved by heating at 400 °C for 1 h while for composite coatings heating for 2 h at 360 °C was sufficient to obtain the maximum hardness. The difference between the friction coefficient of composite and pure coatings was disclosed by heating at 300 °C for 2 h. In other cases, the coefficient of friction (COF) stabilised at similar values. The wear mechanisms involved were mainly abrasion and tribo-oxidation, with the formation of lubricant Fe oxides produced at the counterpart.


2014 ◽  
Vol 693 ◽  
pp. 305-310 ◽  
Author(s):  
Eva Labašová

The coefficient of friction for the bronze material (CuZn25Al6) with insert graphite beds and other bronze material (CuSn12) are investigated in this paper. Friction coefficient was investigated experimentally by the testing machine Tribotestor`89 which uses the principle of the ring on ring method. The external fixed bushing was exposed to the normal load of the same size in all tests. Process of load was increased from level 50 N to 600 N during run up 300 s, after the run up the appropriate level of load was held. The internal bushing performed a rotational movement with constant sliding speed. The value of sliding speed was changed individually for every sample (v = 0.2 (0.3, 0.4) m.s-1). The forth test had a rectangular shape of sliding speed with direct current component 0.3 m.s-1 and the amplitude 0.1 m.s-1 period 300 s, the whole test took 2100 s. The obtained results reveal that friction coefficient increase with the increase of sliding speed.


Author(s):  
T. A. Akhmetov ◽  
V. K. Merinov ◽  
N. V. Kargapolova

The possibility of using the deposited suspended particles of electric arc furnaces as heat-resistant modifying additives for friction composites is considered. It is shown that the precipitated particles obtained during the smelting of steel of different grades have identical morphology and are a homogeneous mechanical mixture consisting mainly of spherical particles of no more than 1 µm in size.It is established that the composites on the basis of the fluoropolymer, modified by precipitated particles obtained in the smelting of steel of various sizes have different tribological properties. This is due to the difference in the chemical composition of the deposited particles.It was found that the use of deposited particles in composite materials allows to vary the value of the dynamic friction coefficient in a wider range, in particular to obtain higher and stable values, while the wear resistance of modified friction composites is more than 500 times higher than the same index of the matrix polymer – polytetrafluoroethylene.


Author(s):  
Xiangzhen Xue ◽  
Jipeng Jia ◽  
Qixin Huo ◽  
Junhong Jia

To investigate the fretting wear of involute spline couplings in aerospace, rack-plane spline couplings rather than the conventional involute spline couplings in aerospace were used to conduct tribological experiments, and it was assumed that the rack-plane spline couplings exhibit consistent contact stress with the real involute spline couplings in aerospace. The relationships among the static friction coefficient, dynamic friction coefficient, and fretting friction coefficient were established via tribological experiments, as well as the fretting-wear mechanism of the rack-plane spline couplings was examined. A fretting-wear estimation model based on the fretting-wear mechanism was developed. By applying the modified Archard equation and Arbitrary Lagrangian–Eulerian adaptive, mesh smoothing algorithm of Abacus was used. According to our experimental results, the fretting wear of the rack-plane spline couplings consisted primarily of abrasive wear, oxidative wear, and adhesive wear. For both, lubrication and non-lubrication settings, the fretting friction coefficient of 18CrNi4A steel (0.27) fluctuated between 0.12 (dynamic friction coefficient) and 0.35 (static friction coefficient). The fretting-wear results estimated via numerical prediction were consistent with the experimental results. When sm (vibration amplitude) was 20, 35, and 50 µm, the most difference in the fretting wear between the experimental results and numerical estimation was 0.001, 0.0007, and 0.001 mm, respectively. Therefore, the proposed model provides a method for accurate estimation of the fretting-wear. Additionally, the model contributes to the precise design of involute spline couplings in aerospace.


Author(s):  
Pradeep L. Menezes ◽  
Kishore ◽  
Satish V. Kailas

In the present investigation, basic studies were conducted using Inclined pin-on-plate sliding Tester to understand the role of surface texture of hard material against soft materials during sliding. Soft materials such as Al-Mg alloy, pure Al and pure Mg were used as pins and 080 M40 steel was used as plate in the tests. Two surface parameters of steel plates — roughness and texture — were varied in tests. It was observed that the transfer layer formation and the coefficient of friction which has two components, namely adhesion and plowing component, are controlled by the surface texture of harder material. For the case of Al-Mg alloy, stick-slip phenomenon was absent under both dry and lubricated conditions. However, for the case of Al, it was observed only under lubricated conditions while for the case of Mg, it was observed under both dry and lubricated conditions. Further, it was observed that the amplitude of stick-slip motion primarily depends on plowing component of friction. The plowing component of friction was highest for the surface that promotes plane strain conditions near the surface and was lowest for the surface that promotes plane stress conditions near the surface.


2013 ◽  
Vol 10 (80) ◽  
pp. 20120467 ◽  
Author(s):  
Michael J. Adams ◽  
Simon A. Johnson ◽  
Philippe Lefèvre ◽  
Vincent Lévesque ◽  
Vincent Hayward ◽  
...  

Many aspects of both grip function and tactile perception depend on complex frictional interactions occurring in the contact zone of the finger pad, which is the subject of the current review. While it is well established that friction plays a crucial role in grip function, its exact contribution for discriminatory touch involving the sliding of a finger pad is more elusive. For texture discrimination, it is clear that vibrotaction plays an important role in the discriminatory mechanisms. Among other factors, friction impacts the nature of the vibrations generated by the relative movement of the fingertip skin against a probed object. Friction also has a major influence on the perceived tactile pleasantness of a surface. The contact mechanics of a finger pad is governed by the fingerprint ridges and the sweat that is exuded from pores located on these ridges. Counterintuitively, the coefficient of friction can increase by an order of magnitude in a period of tens of seconds when in contact with an impermeably smooth surface, such as glass. In contrast, the value will decrease for a porous surface, such as paper. The increase in friction is attributed to an occlusion mechanism and can be described by first-order kinetics. Surprisingly, the sensitivity of the coefficient of friction to the normal load and sliding velocity is comparatively of second order, yet these dependencies provide the main basis of theoretical models which, to-date, largely ignore the time evolution of the frictional dynamics. One well-known effect on taction is the possibility of inducing stick–slip if the friction decreases with increasing sliding velocity. Moreover, the initial slip of a finger pad occurs by the propagation of an annulus of failure from the perimeter of the contact zone and this phenomenon could be important in tactile perception and grip function.


Sign in / Sign up

Export Citation Format

Share Document