Integrated Sulfate Reduction and Biosorption Process for the Treatment of Mine Drainages

2017 ◽  
Vol 262 ◽  
pp. 582-586 ◽  
Author(s):  
Davor Cotoras ◽  
Cristian Hurtado ◽  
Pabla Viedma

Sulfate is a pollutant present in the mining waste water and acid mine drainage. High levels of sulfate can generate important environmental problems. One of the alternatives proposed for the treatment of water with high levels of sulfate is the use of sulfate-reducing microorganisms. This work describes the synergistic combination of a treatment system for the removal of metals by biosorption with the strain Bacillus sp. NRRL-B-30881 to reduce the inhibiting concentration of metals in waters, followed by a new process of sulfate removal that uses a halotolerant sulfate-reducing microbial consortium. The results show that the sulfate reducing consortium can be cultured and is able to reduce the sulfate concentration using cheaper complex organic substrates like spirulina, cellulose and industrial starch. The sulfate reducing consortium was cultured on a bioreactor with Celite R-635, as support material. Using this bioreactor it was possible to reduce the sulfate concentration in the culture medium in batch or semi-continuous operation. An acid mine drainage was pretreated by lime and treated by biosortion in order to increase the pH and reduce the heavy metals concentration. Subsequently the remaining sulfate was removed by the developed process. This integrated biological process represents a more economical alternative for the removal of metal by biosortion and the removal of sulfate using a sulfate reducing consortium.

2018 ◽  
Vol 73 ◽  
pp. 05009
Author(s):  
Hardyanti Nurandani ◽  
Utomo Sudarno ◽  
Oktaviana Angelica ◽  
Serafina Katrin ◽  
Junaidi Junaidi

Sulphur dioxide gas is one of most contaminating gas in the air. Sulphur gas can be produced by mining activities. Sulphur gas will be harmful if bond with CO2 to form as Sulphur Dioxide. To reduce the Sulphur Dioxide gas concentration we must inhibite the sulphur gas formation from mining activities. The inhibition of sulphur gas could be done by reduce the sulphate concentration in acid mine drainage. One of important factor that influencing the reduce of sulphate is COD/SO42- ratio. The effect of COD/SO42- ratio on bacterial growth and sulfate removal process can be investigated with anaerobic batch reactor. The laundry septic tank sediments were inoculated on an anaerobic batch reactor which were contacted with artificial coal acid mine water wastes with 1000 sulfate concentrations and 2000 mg SO42- /L. In an anaerobic batch reactor there are five reactors with variations of COD / SO42-1.0, 1.5, 2.0, 4.0, and 8.0 ratios. Efficiency ratio and the best sulfate removal rate is in reactor ratio 2.0 with value efficiency of 46.58% and a reduction rate of 29.128 mg / L.day in an anaerobic batch reactor. The efficiency of the removal rate decreased when the COD / SO42->2.0 ratio decreased. The fastest pH decline was in the COD/SO42-8.0 ratio variation in the anaerobic batch reactor and. The COD / SO42-ratio can help the sulfate reduction process in the optimum value by affecting the sulfate-reducing bacterial metabolism in the balance of the acceptor and the electron donor.


2018 ◽  
Vol 78 (8) ◽  
pp. 1715-1725 ◽  
Author(s):  
N. Pérez ◽  
A. Schwarz ◽  
J. de Bruijn

Abstract The performance of passive biochemical reactors in acid mine drainage (AMD) treatment could be enhanced by using fine organic substrates in new reactor designs, such as diffusive exchange reactors. This work evaluated the effect of fine cellulosic components in organic mixtures and of enrichment with inoculum, on sulfate and metals removal in discontinuous cultures for three types of synthetic AMD. The cellulosic substrates evaluated were sawdust, microcrystalline cellulose, and forestry cellulose fibers, supplemented with cow manure and leaf compost. Using microcrystalline cellulose and forestry cellulose fibers with the less concentrated AMD, high sulfate reduction rates (73 mg/L-d and 58.2 mg/L-d, respectively) were achieved. Correspondingly, iron concentrations were reduced by 69% and 86.6%. Based on their higher sulfate reducing capacity, cellulose fibers obtained as fiber boards from a local kraft pulp mill were selected for treating a synthetic AMD with a high copper concentration (273 mg/L) and pH 4.94. In batch culture, low sulfate reducing activity (13.10 mg/L-d) was only observed at the highest substrate/AMD ratio (0.5:10) tested. Results show that the use of forestry cellulose fibers in reactive mixtures supplemented with inoculum could be an alternative for optimization of diffusive exchange reactors for AMD treatment.


2012 ◽  
Vol 610-613 ◽  
pp. 3252-3256
Author(s):  
Mei Qin Chen ◽  
Feng Ji Wu

Acid mine drainage (AMD) has properties of extreme acidification, quantities of sulfate and elevated levels of soluble heavy metals. It was a widespread environmental problem that caused adverse effects to the qualities of ground water and surface water. In the past decades, most of investigations were focused on the heavy metals as their toxicities for human and animals. As another main constitution of AMD, sulfate ion is nontoxic, yet high concentration of sulfate ion can cause many problems such as soil acidification, metal corrosion and health problems. More attention should be paid on the sulfate ion when people focus on the AMD. In the paper, sulfate removal mechanisms include adsorption, precipitation, co-precipitation and biological reduction were analyzed and summarized. Meanwhile, the remediation technologies, especially the applications of them in China were also presented and discussed.


RSC Advances ◽  
2019 ◽  
Vol 9 (33) ◽  
pp. 19016-19030 ◽  
Author(s):  
Yan-Rong Dong ◽  
Jun-Zhen Di ◽  
Ming-Xin Wang ◽  
Ya-Dong Ren

A cost-effective system for acid mine drainage removal was developed with the key role of alkaline H2O2 modified corncob and sulfate reducing bacteria.


2012 ◽  
Vol 83 (3) ◽  
pp. 724-737 ◽  
Author(s):  
Ludovic Giloteaux ◽  
Robert Duran ◽  
Corinne Casiot ◽  
Odile Bruneel ◽  
Françoise Elbaz-Poulichet ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document