A Review on Effect of Nanoreinforcement on Mechanical Properties of Polymer Nanocomposites

2018 ◽  
Vol 280 ◽  
pp. 284-293 ◽  
Author(s):  
M.N. Ervina Efzan ◽  
N. Siti Syazwani

Polymer nanocomposites represent a new class of materials that offer an alternative to the conventional filled polymers. In this new class of materials, nanosized reinforcement are dispersed in polymer matrix offering tremendous improvement in performance properties of the polymer. The combination of nanoscale reinforcement and polymer matrix possess outstanding properties and functional performance which play an important role in many field of applications. This review addresses the types of nanoscale materials reinforced in polymer matrix such as nanocellulose, carbon nanotubes (CNTs), graphene, nanofibers and nanoclay followed by the discussion on the effect of these nanoscale reinforcement on mechanical properties of polymer nanocomposites. Besides, the potential use of polymer nanocomposite reinforced with those nanoscale reinforcements in various field of applications also discussed.

Author(s):  
James Han ◽  
Yu-Fu Ko ◽  
Hsien-Yang Yeh

Longitudinal elastic mechanical behavior of the armchair and zigzag single-walled carbon nanotubes (SWCNTs) and the SWCNTs reinforced polymer nanocomposites are investigated. Finite element analysis (FEA) models of the SWCNTs and the SWCNTs reinforced polymer nanocomposites are developed utilizing multiscale modeling technique along with molecular structural mechanics (MSM), which provides material properties at molecular scale and establishes relations between the steric potential energy and the classic structural mechanics. Material properties of C-C bond were obtained using multiscale-based modeling method with the consideration of shear deformation. In addition, for the interphase layer interaction between the carbon molecules of SWCNTs and the molecules of polymer matrix, multiscale-based modeling method was utilized to obtain the stiffness of nonlinear spring elements representing the van der Waals interaction. It is observed that the mechanical behavior of the SWCNTs reinforced polymer nanocomposites is dictated by the mechanical behavior of the SWCNTs embedded in the polymer matrix. Furthermore, varying radius and length of the SWCNTs would affect the longitudinal elastic mechanical properties of the SWCNTs reinforced polymer nanocomposites. Specifically, the simulation results had demonstrated that longitudinal elastic mechanical properties of the SWCNTs reinforced polymer nanocomposites would vary due to different loading conditions applied, i.e., discrete and continuous loading conditions.


Author(s):  
Reza Moheimani ◽  
M Hasansade

This paper describes a closed-form unit cell micromechanical model for estimating the effective thermal conductivities of unidirectional carbon nanotube reinforced polymer nanocomposites. The model incorporates the typically observed misalignment and curvature of carbon nanotubes into the polymer nanocomposites. Also, the interfacial thermal resistance between the carbon nanotube and the polymer matrix is considered in the nanocomposite simulation. The micromechanics model is seen to produce reasonable agreement with available experimental data for the effective thermal conductivities of polymer nanocomposites reinforced with different carbon nanotube volume fractions. The results indicate that the thermal conductivities are strongly dependent on the waviness wherein, even a slight change in the carbon nanotube curvature can induce a prominent change in the polymer nanocomposite thermal conducting behavior. In general, the carbon nanotube curvature improves the nanocomposite thermal conductivity in the transverse direction. However, using the straight carbon nanotubes leads to maximum levels of axial thermal conductivities. With the increase in carbon nanotube diameter, an enhancement in nanocomposite transverse thermal conductivity is observed. Also, the results of micromechanical simulation show that it is necessary to form a perfectly bonded interface if the full potential of carbon nanotube reinforcement is to be realized.


2021 ◽  
Vol 13 ◽  
Author(s):  
S. K. Parida

: This presented review article is constructed to be an extensive source for polymer nanocomposite researchers covering the relation of structure with property, manufacturing techniques, and potential applications when a small number of nanosized particles are added to a host polymer matrix. The exceptional structural, mechanical, and electrical properties of polymer nanocomposites after the addition of inorganic solid nanoparticles are elucidated by the large surface area of doped nanoparticles that interact with host polymer matrices. Due to the generation of ideas, the conventional methods of preparation of polymer nanocomposites are made more interesting. Hence, this brief review presents a sketch of different synthesis techniques, characterization, applications, and safety concerns for polymer nanocomposites.


RSC Advances ◽  
2016 ◽  
Vol 6 (71) ◽  
pp. 66658-66664 ◽  
Author(s):  
Feng Liu ◽  
Ning Hu ◽  
Jianyu Zhang ◽  
Satoshi Atobe ◽  
Shayuan Weng ◽  
...  

The interfacial mechanical properties between graphene (GR) and a polymer matrix play a key role in load transfer capability for GR/polymer nanocomposites.


Aerospace ◽  
2005 ◽  
Author(s):  
Arnold Lumsdaine ◽  
Mohan Damu

Topology optimization has been successfully used for improving vibration damping in constrained layer damping structures with viscoelastic materials. Reinforcing carbon nanotubes in a polymer matrix greatly influences the mechanical properties of the polymer. Such nanotube-reinforced polymers (NRP) can be used to further enhance the damping properties of the constrained layer structures. The inclusion of nanotubes into a polymer matrix provides a new design variable in the topology optimization studies on such structures. In this work, the topology optimization of structures using such NRP as the damping material is performed. The resulting structures show a phenomenal improvement in damping. Moreover, a more efficient method is used for the optimization process.


MRS Bulletin ◽  
2007 ◽  
Vol 32 (4) ◽  
pp. 314-322 ◽  
Author(s):  
Karen I. Winey ◽  
Richard A. Vaia

AbstractPolymer nanocomposites (PNCs)–that is, nanopar ticles (spheres, rods, plates) dispersed in a polymer matrix–have garnered substantial academic and industrial in terest since their inception, circa 1990. This is due in large part to the incredible promise demonstrated by these early efforts: PNCs will not only expand the per form ance space of traditional filled polymers, but introduce completely new combinations of properties and thus enable new applications for plastics. Low volume additions (1–5%) of nanopar -ticles, such as layered silicates or carbon nanotubes, provide property enhancements with respect to the neat resin that are comparable to those achieved by conventional loadings (15–40%) of traditional fillers. The lower loadings facilitate proc essing and re duce component weight. Most important, though, is the unique value - added properties not normally possible with traditional fillers, such as reduced permeability, optical clarity, self - passivation, and increased re sis tance to oxidation and ablation. These characteristics have been transformed into numerous commercial suc cesses, including automotive parts, coatings, and flame retardants. This issue of theMRS Bulletinprovides a snapshot of these exemplary successes, future opportunities, and the critical scientific challenges still to be addressed for these nanoscale multiphase systems. In addition, these ar ticles provide a perspective on the current status and future directions of polymer nanocomposite science and technology and their potential to move beyond additive concepts to designed ma te rials and devices with prescribed nanoscale composition and morphology.


2016 ◽  
Vol 10 (4s) ◽  
pp. 581-586 ◽  
Author(s):  
Eldar Zeynalov ◽  
◽  
Manfred Wagner ◽  
Joerg Friedrich ◽  
Matanat Magerramova ◽  
...  

This review briefly gives the status of worldwide researches in the aspect of an impact of incorporated fullerenes and carbon nanotubes (CNTs) on durability of different polymeric composites under stressful harsh therm-oxidative conditions. It has been inferred that among various nanoparticulates, fullerenes and CNTs are preferable to be used for enhancing thermal and mechanical properties of polymers. Fullerenes C60, C70, fullerene soot and CNTs being integrated in polymer matrix effectively prevent both their thermal and thermoxidative degradation, and photooxidation processes as well.


2015 ◽  
Vol 1120-1121 ◽  
pp. 357-360
Author(s):  
Shuang Li ◽  
Xiong Yan Zhao ◽  
Xin Wang

This paper mainly describes the preparation of carbon nanotubes (CNTs) reinforced BMI/DBA composites, as well as the effects of CNTs contents on mechanical properties of BMI/DBA/CNTs nanocomposites. The results indicated that with the level of hydroxy-modified carbon nanotubes increased, the mechanical properties of the BMI/DBA/CNTs nanocomposites first increase then decrease. When the content of hydroxyl-modified carbon nanotubes was added to 0.75wt%, the mechanical properties of obtained nanocomposites reached the maximum. In addition, the hydroxyl-modified carbon nanotubes were found to be compatible with the polymer matrix effectively.


Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 872 ◽  
Author(s):  
Ana Maria Díez-Pascual

Carbon-based nanomaterials such as carbon nanotubes, graphene and its derivatives, nanodiamond, fullerenes, and other nanosized carbon allotropes have recently attracted a lot of attention among the scientific community due to their enormous potential for a wide number of applications arising from their large specific surface area, high electrical and thermal conductivity, and good mechanical properties [...]


Sign in / Sign up

Export Citation Format

Share Document