scholarly journals Thermal Conductivity of Water Based Magnetite Ferrofluids at Different Temperature for Heat Transfer Applications

2018 ◽  
Vol 280 ◽  
pp. 36-42 ◽  
Author(s):  
H. Haiza ◽  
I.I. Yaacob ◽  
Ahmad Zahirani Ahmad Azhar

Magnetic magnetite, Fe3O4 nanoparticles produced by Massart’s procedure were used to prepare water based magnetite, Fe3O4 ferrofluids without addition of any stabilizing agent or surfactant. The thermal properties and suspension stabilization of the ferrofluids were investigated by varying the magnetite, Fe3O4 nanoparticles concentration in the ferrofluids prepared. The thermal conductivity of water based ferrofluids prepared using five different volume fraction of magnetite, Fe3O4 suspension (0.1, 0.05, 0.02, 0.01 and 0.005) were measured at five different temperature, 25°C, 30°C, 40°C, 50°C and 60°C in order to evaluate its potential application as heat transfer fluid. The results shows that the thermal conductivity of the ferrofluids are higher than the base fluid, and the thermal conductivity of the ferrofluids increased as the magnetite concentration in the ferrofluids decreased however reached its optimum for ferrofluids prepared using 0.01 volume fraction of magnetite suspension over 0.99 volume fraction of water. Accordingly, the thermal conductivity of the ferrofluids significantly increased as the temperature increased where 49.4% enhancement with respect to water were observed at temperature 60°C.

2020 ◽  
Vol 12 (8) ◽  
pp. 168781402095227
Author(s):  
Minsuk Kong ◽  
Seungro Lee

Thermal performance of Al2O3 nanoparticles dispersed in water was evaluated experimentally in a fully instrumented circular tube under turbulent flow conditions. Thermophysical properties of Al2O3 nanofluids at three different volumetric concentrations (0.38%, 0.81%, and 1.30%) were determined as a function of temperature. Pressure drop and heat transfer experiments were carried out at different volumetric concentrations and inlet fluid temperatures (10°C–30°C). The overall performance of the Al2O3 nanofluids was evaluated by considering both their hydraulic and heat transfer characteristics. The experimental results showed that the use of Al2O3 nanofluids increases the pressure drop by up to about 13% due to the greater viscosity. In addition, the heat transfer coefficient of nanofluids increased with the volumetric concentration by up to approximately 19% induced by the enhanced thermal conductivity. Furthermore, the experimental results indicated that the nanofluid with a volume fraction of 0.81% at the highest inlet fluid temperature increases the overall performance by up to around 8% and performs better than the other volume fractions. Enhancement in the overall performance increases with increasing inlet fluid temperature because of both the enhanced effective thermal conductivity and the decreased viscosity, which increases the energy exchange and decreases the pressure loss, respectively.


2015 ◽  
Vol 93 (7) ◽  
pp. 725-733 ◽  
Author(s):  
M. Ghalambaz ◽  
E. Izadpanahi ◽  
A. Noghrehabadi ◽  
A. Chamkha

The boundary layer heat and mass transfer of nanofluids over an isothermal stretching sheet is analyzed using a drift-flux model. The relative slip velocity between the nanoparticles and the base fluid is taken into account. The nanoparticles’ volume fractions at the surface of the sheet are considered to be adjusted passively. The thermal conductivity and the dynamic viscosity of the nanofluid are considered as functions of the local volume fraction of the nanoparticles. A non-dimensional parameter, heat transfer enhancement ratio, is introduced, which shows the alteration of the thermal convective coefficient of the nanofluid compared to the base fluid. The governing partial differential equations are reduced into a set of nonlinear ordinary differential equations using appropriate similarity transformations and then solved numerically using the fourth-order Runge–Kutta and Newton–Raphson methods along with the shooting technique. The effects of six non-dimensional parameters, namely, the Prandtl number of the base fluid Prbf, Lewis number Le, Brownian motion parameter Nb, thermophoresis parameter Nt, variable thermal conductivity parameter Nc and the variable viscosity parameter Nv, on the velocity, temperature, and concentration profiles as well as the reduced Nusselt number and the enhancement ratio are investigated. Finally, case studies for Al2O3 and Cu nanoparticles dispersed in water are performed. It is found that increases in the ambient values of the nanoparticles volume fraction cause decreases in both the dimensionless shear stress f″(0) and the reduced Nusselt number Nur. Furthermore, an augmentation of the ambient value of the volume fraction of nanoparticles results in an increase the heat transfer enhancement ratio hnf/hbf. Therefore, using nanoparticles produces heat transfer enhancement from the sheet.


2014 ◽  
Vol 18 (suppl.1) ◽  
pp. 189-200 ◽  
Author(s):  
Primoz Ternik ◽  
Rebeka Rudolf

The present work deals with the natural convection in a square cavity filled with the water-based Au nanofluid. The cavity is heated on the vertical and cooled from the adjacent wall, while the other two horizontal walls are adiabatic. The governing differential equations have been solved by the standard finite volume method and the hydrodynamic and thermal fields were coupled together using the Boussinesq approximation. The main objective of this study is to investigate the influence of the nanoparticles? volume fraction on the heat transfer characteristics of Au nanofluids at the given base fluid?s (i.e. water) Rayleigh number. Accurate results are presented over a wide range of the base fluid Rayleigh number and the volume fraction of Au nanoparticles. It is shown that adding nanoparticles in a base fluid delays the onset of convection. Contrary to what is argued by many authors, we show by numerical simulations that the use of nanofluids can reduce the heat transfer rate instead of increasing it.


2021 ◽  
Vol 02 (01) ◽  
Author(s):  
A.G.N. Sofiah ◽  
◽  
M. Samykano ◽  
S. Shahabuddin ◽  
K. Kadirgama ◽  
...  

Since a decade ago, investigation on nanofluids has grown significantly owing to its enhanced thermal properties compared to conventional heat transfer fluids. This engineered nanofluid has been widely used in the thermal engineering system to improve their energy consumption by improving the thermal efficiency of the system. The addition of nano-size particles as additives dispersed in the base fluids proved to significantly either improve or diminish the behaviour of the base fluids. The behaviour of the base fluid highly depends on the properties of the additives material, such as morphology, size, and volume fraction. Among the variety of nanoparticles studied, the conducting polymers have been subject of high interest due to its high environmental stability, good electrical conductivity, antimicrobial, anti-corrosion property and significantly cheap compared to other nanoparticles. As such, the main objective of the present review is to provide an overview of the work performed on thermal properties performance of conducting polymers based nanofluids.


2018 ◽  
Vol 67 ◽  
pp. 03057 ◽  
Author(s):  
Wayan Nata Septiadi ◽  
Ida Ayu Nyoman Titin Trisnadewi ◽  
Nandy Putra ◽  
Iwan Setyawan

Nanofluid is a liquid fluid mixture with a nanometer-sized solid particle potentially applied as a heat transfer fluid because it is capable of producing a thermal conductivity better than a base fluid. However, nanofluids have a weakness that is a high level of agglomeration as the resulting conductivity increases. Therefore, in this study, the synthesis of two nanoparticles into the base fluid called hybrid nanofluids. This study aims to determine the effect of nanoparticle composition on the highest thermal conductivity value with the lowest agglomeration value. This research was conducted by dispersing Al2O3-TiO2 nanoparticles in water with volume fraction of 0.1%, 0.3%, 0.5%, 0.7% in the composition of Al2O3-TiO2 ratio of 75%:25%, 50%:50%, 25%:75%. The synthesis was performed with a magnetic stirrer for 30 minutes. The tests were carried out in three types: thermal conductivity testing with KD2, visual agglomeration observation and absorbance measurements using UV-Vis, wettability testing with HSVC tools and Image applications. The test results showed that the ratio composition ratio of 75% Al2O3-25% TiO2 with a volume fraction of 0.7% resulted in an increase in optimum thermal conductivity with the best wettability and the longest agglomeration level.


Author(s):  
Nur Farhana Mohd Razali ◽  
Ahmad Fudholi ◽  
Mohd Hafidz Ruslan ◽  
Kamaruzzaman Sopian

<span lang="EN-US">Solar energy is secure, clean, and available on earth throughout the year. The PV/T system is a device designed to receive solar energy and convert it into electric/thermal energy. Nanofluid is a new generation of heat transfer fluid with promising higher thermal conductivity and improve heat transfer rate compared with conventional fluids. In this review, the recent studies of PV/T using nanofluid is discussed regarding basic concept and theory PV/T, thermal conductivity of nanofluid and experimentally and theoretically study the perfromance of PV/T using nanofluid. A review of the literature shows that many studies have evaluated the potential of nanofluid as heat transfer fluid and optical filter in the PV/T system. The preparations of nanofluid play an essential key for high stability and homogenous nanofluid for a long period. The thermal conductivity of nanofluid is depending on the size of nanoparticles, concentration and preparation of nanofluids.</span>


2015 ◽  
Vol 1128 ◽  
pp. 384-389
Author(s):  
Madalina Georgiana Moldoveanu ◽  
Alina Adriana Minea

Application of nanoparticles provides an effective way of improving heat transfer characteristics of fluids. Particles less than 100 nm in diameter exhibit different properties from those of conventional solids. Compared with micron-sized particles, nanophase powders have much larger relative surface areas and a great potential for heat transfer enhancement. Some researchers tried to suspend nanoparticles into fluids to form high effective heat transfer fluids. Some preliminary experimental results showed that increase in thermal conductivity of approximately 60% can be obtained for some nanofluids consisting of water and 5 vol% CuO nanoparticles. So, the thermal conductivity of nanofluid was found to be strongly dependent on the nanoparticle volume fraction. So far it has been an unsolved problem to develop a sophisticated theory to predict thermal conductivity of nanofluids, although there are some semi empirical correlations to calculate the apparent conductivity of two-phase mixture. In this article, several correlations for predicting the nanofluid thermal conductivity will be compared and results will be discussed for three water based nanofluids.


2009 ◽  
Vol 131 (11) ◽  
Author(s):  
W. Y. Lai ◽  
S. Vinod ◽  
P. E. Phelan ◽  
Ravi Prasher

Nanofluids are colloidal solutions, which contain a small volume fraction of suspended submicron particles or fibers in heat transfer liquids such as water or glycol mixtures. Compared with the base fluid, numerous experiments have generally indicated an increase in effective thermal conductivity and a strong temperature dependence of the static effective thermal conductivity. However, in practical applications, a heat conduction mechanism may not be sufficient for cooling high heat dissipation devices such as microelectronics or powerful optical equipment. Thus, thermal performance under convective heat transfer conditions becomes of primary interest. We report here the heat transfer coefficient h in both developing and fully developed regions by using water-based alumina nanofluids. Our experimental test section consists of a single 1.02-mm diameter stainless steel tube, which is electrically heated to provide a constant wall heat flux. Both pressure drop and temperature differences are measured, but mostly here we report our h measurements under laminar flow conditions. An extensive characterization of the nanofluid samples, including pH, electrical conductivity, particle sizing, and zeta potential, is also documented. The measured h values for nanofluids are generally higher than those for pure water. In the developing region, this can be at least partially explained by Pr number effects.


2014 ◽  
Vol 660 ◽  
pp. 730-734 ◽  
Author(s):  
Khamisah Abdul Hamid ◽  
Wan Hamzah Azmi ◽  
Rizalman Mamat ◽  
Nur Ashikin Usri

Nanofluids are the new coolant fluid that has been widely investigates due to its ability to improved heat transfer better than conventional heat transfer fluid. The need to study the nanofluid properties has been increased to provide better understanding on nanofluid thermal properties and behavior. This study presents the measurement analysis on thermal conductivity enhancement of Al2O3 nanoparticles dispersed in ethylene glycol. The nanofluids are prepared using two step method for volume concentration range from 1.0 % to 4.0 %. The thermal conductivity measurement of the nanofluid is performed by KD2 Pro Thermal Properties Analyzer at working temperature range from 30 °C to 80 °C. The maximum enhancement in thermal conductivity is 21.1 % at volume concentration of 2.0 % and temperature of 70 °C. The results show that the thermal conductivity increases with the increase of nanofluid concentration and temperature. Also, the nanofluid shows enhancement in thermal conductivity compare to the base fluid.


Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4632 ◽  
Author(s):  
Paloma Martínez-Merino ◽  
Rodrigo Alcántara ◽  
Teresa Aguilar ◽  
Juan Jesús Gallardo ◽  
Iván Carrillo-Berdugo ◽  
...  

Nanofluids are colloidal suspensions of nanomaterials in a fluid which exhibit enhanced thermophysical properties compared to conventional fluids. The addition of nanomaterials to a fluid can increase the thermal conductivity, isobaric-specific heat, diffusivity, and the convective heat transfer coefficient of the original fluid. For this reason, nanofluids have been studied over the last decades in many fields such as biomedicine, industrial cooling, nuclear reactors, and also in solar thermal applications. In this paper, we report the preparation and characterization of nanofluids based on one-dimensional MoS2 and WS2 nanosheets to improve the thermal properties of the heat transfer fluid currently used in concentrating solar plants (CSP). A comparative study of both types of nanofluids was performed for explaining the influence of nanostructure morphologies on nanofluid stability and thermal properties. The nanofluids prepared in this work present a high stability over time and thermal conductivity enhancements of up to 46% for MoS2-based nanofluid and up to 35% for WS2-based nanofluid. These results led to an increase in the efficiency of the solar collectors of 21.3% and 16.8% when the nanofluids based on MoS2 nanowires or WS2 nanosheets were used instead of the typical thermal oil.


Sign in / Sign up

Export Citation Format

Share Document