scholarly journals Synthesis of hybrid nanofluid with two-step method

2018 ◽  
Vol 67 ◽  
pp. 03057 ◽  
Author(s):  
Wayan Nata Septiadi ◽  
Ida Ayu Nyoman Titin Trisnadewi ◽  
Nandy Putra ◽  
Iwan Setyawan

Nanofluid is a liquid fluid mixture with a nanometer-sized solid particle potentially applied as a heat transfer fluid because it is capable of producing a thermal conductivity better than a base fluid. However, nanofluids have a weakness that is a high level of agglomeration as the resulting conductivity increases. Therefore, in this study, the synthesis of two nanoparticles into the base fluid called hybrid nanofluids. This study aims to determine the effect of nanoparticle composition on the highest thermal conductivity value with the lowest agglomeration value. This research was conducted by dispersing Al2O3-TiO2 nanoparticles in water with volume fraction of 0.1%, 0.3%, 0.5%, 0.7% in the composition of Al2O3-TiO2 ratio of 75%:25%, 50%:50%, 25%:75%. The synthesis was performed with a magnetic stirrer for 30 minutes. The tests were carried out in three types: thermal conductivity testing with KD2, visual agglomeration observation and absorbance measurements using UV-Vis, wettability testing with HSVC tools and Image applications. The test results showed that the ratio composition ratio of 75% Al2O3-25% TiO2 with a volume fraction of 0.7% resulted in an increase in optimum thermal conductivity with the best wettability and the longest agglomeration level.

2018 ◽  
Vol 280 ◽  
pp. 36-42 ◽  
Author(s):  
H. Haiza ◽  
I.I. Yaacob ◽  
Ahmad Zahirani Ahmad Azhar

Magnetic magnetite, Fe3O4 nanoparticles produced by Massart’s procedure were used to prepare water based magnetite, Fe3O4 ferrofluids without addition of any stabilizing agent or surfactant. The thermal properties and suspension stabilization of the ferrofluids were investigated by varying the magnetite, Fe3O4 nanoparticles concentration in the ferrofluids prepared. The thermal conductivity of water based ferrofluids prepared using five different volume fraction of magnetite, Fe3O4 suspension (0.1, 0.05, 0.02, 0.01 and 0.005) were measured at five different temperature, 25°C, 30°C, 40°C, 50°C and 60°C in order to evaluate its potential application as heat transfer fluid. The results shows that the thermal conductivity of the ferrofluids are higher than the base fluid, and the thermal conductivity of the ferrofluids increased as the magnetite concentration in the ferrofluids decreased however reached its optimum for ferrofluids prepared using 0.01 volume fraction of magnetite suspension over 0.99 volume fraction of water. Accordingly, the thermal conductivity of the ferrofluids significantly increased as the temperature increased where 49.4% enhancement with respect to water were observed at temperature 60°C.


2015 ◽  
Vol 93 (7) ◽  
pp. 725-733 ◽  
Author(s):  
M. Ghalambaz ◽  
E. Izadpanahi ◽  
A. Noghrehabadi ◽  
A. Chamkha

The boundary layer heat and mass transfer of nanofluids over an isothermal stretching sheet is analyzed using a drift-flux model. The relative slip velocity between the nanoparticles and the base fluid is taken into account. The nanoparticles’ volume fractions at the surface of the sheet are considered to be adjusted passively. The thermal conductivity and the dynamic viscosity of the nanofluid are considered as functions of the local volume fraction of the nanoparticles. A non-dimensional parameter, heat transfer enhancement ratio, is introduced, which shows the alteration of the thermal convective coefficient of the nanofluid compared to the base fluid. The governing partial differential equations are reduced into a set of nonlinear ordinary differential equations using appropriate similarity transformations and then solved numerically using the fourth-order Runge–Kutta and Newton–Raphson methods along with the shooting technique. The effects of six non-dimensional parameters, namely, the Prandtl number of the base fluid Prbf, Lewis number Le, Brownian motion parameter Nb, thermophoresis parameter Nt, variable thermal conductivity parameter Nc and the variable viscosity parameter Nv, on the velocity, temperature, and concentration profiles as well as the reduced Nusselt number and the enhancement ratio are investigated. Finally, case studies for Al2O3 and Cu nanoparticles dispersed in water are performed. It is found that increases in the ambient values of the nanoparticles volume fraction cause decreases in both the dimensionless shear stress f″(0) and the reduced Nusselt number Nur. Furthermore, an augmentation of the ambient value of the volume fraction of nanoparticles results in an increase the heat transfer enhancement ratio hnf/hbf. Therefore, using nanoparticles produces heat transfer enhancement from the sheet.


2021 ◽  
Vol 321 ◽  
pp. 02004
Author(s):  
Zakaria Korei ◽  
Smail Benissaad

This research aims to investigate thermal and flow behaviors and entropy generation of magnetohydrodynamic Al2O3-Cu/water hybrid nanofluid in a lid-driven cavity having two rounded corners. A solver based on C ++ object-oriented language was developed where the finite volume was used. Parameter’s analysis is provided by varying Reynolds numbers (Re), Hartmann numbers (Ha), the volume fraction of hybrid nanofluid (ϕ), radii of the rounded corners. The findings show that reducing the radii of the rounded corners minimizes the irreversibility. Furthermore, the thermal conductivity and dynamic viscosity of hybrid nanofluid contribute to increasing the irreversibility. Finally, the entropy generation is decreased by increasing the Hartman number and increases by rising the Reynolds number.


2013 ◽  
Vol 639-640 ◽  
pp. 325-328
Author(s):  
Yan Jia Guo ◽  
Zhu Li ◽  
Yuan Zhen Liu ◽  
Shang Song Qin

Based on the compressive strength, the thermal conductivity, the elastic modulus and the steel bond strength of thermal insulation glazed hollow bead concrete, referring to the carbonation mechanism and the influence factors of the ordinary concrete, considering the impact of raw materials and the influence of construction technology, the study on thermal insulation glazed hollow bead concrete anti-carbonation was proposed. From the test results, it can conclude that for the same intensity level, the anti-carbonation capacity of the thermal insulation glazed hollow bead concrete is better than that of the ordinary concrete. For different strength grade of thermal insulation glazed hollow bead concrete, to some extend, the higher the intensity level is, the stronger the ability of thermal insulation glazed hollow bead concrete anti-carbonation is.


2020 ◽  
Vol 1008 ◽  
pp. 47-52
Author(s):  
Abdallah Yousef Mohammed Ali ◽  
Ahmed Hassan El-Shazly ◽  
Marwa Farouk El-Kady ◽  
Hesham Ibrahim Elqady ◽  
Kholoud Madih ◽  
...  

Magnesium oxide (MgO) nanoparticles were synthesized using the sol-gel technique then characterized. Cetyl Trimethyl Ammonium Bromide (CTAB) surfactant was added to reduce Van der Waal forces among MgO nanoparticles and distilled water forming a stable nanofluid using two-step method with aid of ultrasound sonication. Pure distilled water and nanofluids with different volume fractions of 0.25, 0.5, 0.75, and 1% are used as working fluids. Thermophysical properties of prepared nanofluids were measured experimentally and determined theoretically. Effect of solid volume fraction on the thermophysical properties; including thermal conductivity, heat capacity, viscosity, and density of MgO-water nanofluids are discussed. Moreover, experimental results have been compared with the suitable correlations for MgO-water nanofluid. The findings show that thermal conductivity, viscosity, and density of nanofluid increases with increasing solid volume fraction.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
M. C. Mbambo ◽  
M. J. Madito ◽  
T. Khamliche ◽  
C. B. Mtshali ◽  
Z. M. Khumalo ◽  
...  

Abstract We report on the synthesis and thermal conductivity of gold nanoparticles (AuNPs) decorated graphene nanosheets (GNs) based nanofluids. The GNs-AuNPs nanocomposites were synthesised using a nanosecond pulsed Nd:YAG laser (wavelength = 1,064 nm) to ablate graphite target followed by Au in ethylene glycol (EG) base fluid to obtain GNs-AuNPs/EG hybrid nanofluid. The characterization of the as-synthesised GNs-AuNPs/EG hybrid nanofluid confirmed a sheet-like structure of GNs decorated with crystalline AuNPs with an average particle diameter of 6.3 nm. Moreover, the AuNPs appear smaller in the presence of GNs which shows the advantage of ablating AuNPs in GNs/EG. The thermal conductivity analysis in the temperature range 25–45 °C showed that GNs-AuNPs/EG hybrid nanofluid exhibits an enhanced thermal conductivity of 0.41 W/mK compared to GNs/EG (0.35 W/mK) and AuNPs/EG (0.39 W/mK) nanofluids, and EG base fluid (0.33 W/mK). GNs-AuNPs/EG hybrid nanofluid displays superior enhancement in thermal conductivity of up to 26% and this is due to the synergistic effect between AuNPs and graphene sheets which have inherent high thermal conductivities. GNs-AgNPs/EG hybrid nanofluid has the potential to impact on enhanced heat transfer technological applications. Also, this work presents a green synthesis method to produce graphene-metal nanocomposites for various applications.


Author(s):  
Huaqing Xie ◽  
Lifei Chen ◽  
Yang Li ◽  
Wei Yu

Multiwalled carbon nanotubes (CNTs) have been treated by using a mechanochemical reaction method to enhance their dispersibility for producing CNT nanofluids. The thermal conductivity was measured by a short hot wire technique and the viscosity was measured by a rotary viscometer. The thermal conductivity enhancement reaches up to 17.5% at a volume fraction of 0.01 for an ethylene glycol based nanofluid. Temperature variation was shown to have no obvious effects on the thermal conductivity enhancement for the as prepared nanofluids. With an increase in the thermal conductivity of the base fluid, the thermal conductivity enhancement of a nanofluid decreases. At low volume fractions (<0.4 Vol%), nanofluids have lower viscosity than the corresponding base fluid due to lubricative effect of nanoparticles. When the volume fraction is higher than 0.4 Vol%, the viscosity increases with nanoparticle loadings. The prepared nanofluids, with no contamination to medium, good fluidity, stability, and high thermal conductivity, would have potential applications as coolants in advanced thermal systems.


2014 ◽  
Vol 789 ◽  
pp. 6-11 ◽  
Author(s):  
Jian Liu ◽  
Sheng Lu ◽  
Qi Chen ◽  
Jun Hao Zhang ◽  
Shou Guang Yao

Different mass concentrations of Al2O3, SiO2, CuO nanofluids were made by using two-step method with the three types of base fluids deionized water, ethanol and ethylene glyco. The suspension stability of nanofluids and its effect by adding anion and cation surfactants through sedimentation method were studied. The results show that ehylene glycol is as the base fluid, the suspension stability of nanofluids with DW as the base fluid is worst. The suspension stability of Al2O3, SiO2, CuO nanofluids is significantly improved by addition of appropriate dosage of adding anion and cation surfactants for different base fluids. The effect of HTAB is better than that of SDBS.


2020 ◽  
Vol 2 (3) ◽  
pp. 108-114
Author(s):  
Amin Moslemi Petrudi ◽  
Ionut Cristian Scurtu

Optimization is to find the best answer among existing situations. Optimization is used in the design and maintenance of many engineering systems to minimize costs or maximize profits. Due to the widespread use of optimization in engineering, this topic has grown a lot. In this paper, the optimization of multi-objective of Water Hybrid Nanofluid/Carbon Nanotubes is investigated. Multi-Objective Particle Swarm Optimization (MOPSO) algorithm has been used in order to maximize thermal conductivity and minimum viscosity by changing the temperature (300 to 340 ºk) and the volume fraction (0.01 to 0.4%) of nanofluid. Artificial Neural Network (ANN) modeling of experimental data has been used to obtain the values. Parto fronts, the optimal points and different values are 20 members and 15 iterations, and in order to compare the results optimization process on the first, fifth, tenth fronts, a relation has been proposed to predict the viscosity and Parto fronts in the optimization process. The aim of the study was to optimize nanofluid to reduce viscosity and increase thermal conductivity.


2020 ◽  
Vol 16 (5) ◽  
pp. 734-747 ◽  
Author(s):  
Amir Hossein Sharifi ◽  
Iman Zahmatkesh ◽  
Fatemeh F. Bamoharram ◽  
Amir Hossein Shokouhi Tabrizi ◽  
Safieh Fazel Razavi ◽  
...  

Background: Hybrid nanofluids are considered as an extension of conventional nanofluids which are prepared through suspending two or more nanoparticles in the base fluids. Previous studies on hybrid nanofluids have measured their thermal conductivity overlooking other thermophysical properties such as viscosity and electrical conductivity. Objective: An experimental investigation is undertaken to measure thermal conductivity, viscosity, and electrical conductivity of a hybrid nanofluid prepared through dispersing alumina nanoparticles and multiwall carbon nanotubes in saltwater. These properties are the main important factors that must be assessed before performance analysis for industrial applications. Methods: The experimental data were collected for different values of the nanoparticle volume fraction, temperature, salt concentration, and pH value. Attention was paid to explore the consequences of these parameters on the nanofluid’s properties and to find optimal conditions to achieve the highest value of the thermal conductivity and the lowest values of the electrical conductivity and the viscosity. Results: The results demonstrate that although the impacts of the pH value and the nanoparticle volume fraction on the nanofluid’s thermophysical properties are not monotonic, optimal conditions for each of the properties are reachable. It is found that the inclusion of the salt in the base fluid may not change the thermal conductivity noticeably. However, a considerable reduction in the viscosity and substantial elevation in the electrical conductivity occur with an increase in the salt concentration. Conclusion: With the addition of salt to a base fluid, the thermophysical properties of a nanofluid can be controlled.


Sign in / Sign up

Export Citation Format

Share Document