Effect of the Adjuvants on the Properties of Superfine SnO2 Powders

2018 ◽  
Vol 281 ◽  
pp. 705-709
Author(s):  
Jie Guang Song ◽  
Lin Chen ◽  
Xian Jie Zhou ◽  
Xue Yang ◽  
Xin Peng Lou ◽  
...  

Ultrafine SnO2 is a new type of material, in the field of solar cells and semiconductors have a lot of use. To get different morphology and different properties of tin oxide powder material, making more applications in the field, the effect of the adjuvants on the properties of superfine SnO2 powders were distigated. Through the analysis of experimental results, the conclusions are shown the stronger the alkalinity of the auxiliary agent, the larger the grain size of the obtained particles and the more uniform the particles. When the molar ratio of salt to alkali is more than 1: 4, the amount of alkali is gradually reduced, the particle size is small, the morphology is not uniform and easy to agglomerate. When the molar ratio of salt to alkali is 1: 4, the smaller particle size is shown, the appearance morphology is uneven. The longer the reaction time, the more complete the grain, the more uniform the morphology. Under the condition of SnCl4 concentration of 0.05mol/L, reaction time is 4 days, salt and alkali molar ratio is 1: 4, holding temperature is 200°C, the auxiliary agent is NaOH, the size, shape and performance of synthesized SnO2 are the better.

2018 ◽  
Vol 934 ◽  
pp. 35-40
Author(s):  
Jie Guang Song ◽  
Cai Liang Pang ◽  
Yue Liu ◽  
Jia Zhang ◽  
Lin Chen ◽  
...  

Ultrafine SnO2 is a new type of material, in the field of solar cells and semiconductors have a lot of use. To get different morphology and different properties of tin oxide powder material, making more applications in the field, the effect of the adjuvants on the properties of superfine SnO2 powders were distigated. Through the analysis of experimental results, the conclusions are shown the stronger the alkalinity of the auxiliary agent, the larger the grain size of the obtained particles and the more uniform the particles. When the molar ratio of salt to alkali is more than 1: 4, the amount of alkali is gradually reduced, the particle size is small, the morphology is not uniform and easy to agglomerate. When the molar ratio of salt to alkali is 1: 4, the smaller particle size is shown, the appearance morphology is uneven. The longer the reaction time, the more complete the grain, the more uniform the morphology. Under the condition of SnCl4 concentration of 0.05 mol/L, reaction time is 4 days, salt and alkali molar ratio is 1: 4, holding temperature is 200 °C, the auxiliary agent is NaOH, the size, shape and properties of synthesized SnO2 are the better.


2011 ◽  
Vol 298 ◽  
pp. 163-168 ◽  
Author(s):  
Yuan Yuan Lei ◽  
Guo Zheng ◽  
Yu Sun ◽  
Yong Zhou

In this paper, with fatty alcohol polyoxyethylene (AEO9), succinic anhydride (SA) and sodium hydroxide as raw materials, a new type of fatty alcohol polyoxyethylene carboxylate surfactants (SAE9C-Na) was obtained by esterification and neutralizing effect. The influencing factors were researched and its surface properties were studied. The optimum condition of synthesis was determined: molar ratio of alcohol to acid was 1:1.1, reaction temperature was 85°C, reaction time was 60 min, under this condition, the yield could reach up to 95.8%. The results received from this experiment showed that SAE9C-Na had excellent surface activity and foaming and foam stability, whose emulsification and solubility enhancement were improved greatly.


2018 ◽  
Vol 281 ◽  
pp. 46-51
Author(s):  
Ge Xiong ◽  
Hui Min Sun ◽  
Xue Yang ◽  
Jin Shi Li ◽  
Mei Hua Chen ◽  
...  

Ultrafine Co2O3powder was prepared via hydrothermal synthesis. The effect of technology on the performance of the superfine Co2O3powders was investigated, and the hydrothermal parameters in preparing Co2O3were gradually improved. In addition, the morphology and grain size of the Co2O3powder were analyzed by FESEM. Results show that reducing the salt–alkali molar ratio resulted in more uniform Co2O3powder and smaller particles, with average particle size of approximately 40 nm. Reaction time displayed little effect on the Co2O3powder, but the particle size decreased with the reaction time. The concentration of salt solution remarkably affected the morphology of the Co2O3powder. Lower concentration resulted in smaller particle aggregation and particle size.


2021 ◽  
Vol 10 (1) ◽  
pp. 157-168
Author(s):  
Biwei Luo ◽  
Pengfei Li ◽  
Yan Li ◽  
Jun Ji ◽  
Dongsheng He ◽  
...  

Abstract The feasibility of industrial waste fly ash as an alternative fluxing agent for silica in carbothermal reduction of medium-low-grade phosphate ore was studied in this paper. With a series of single-factor experiments, the reduction rate of phosphate rock under different reaction temperature, reaction time, particle size, carbon excess coefficient, and silicon–calcium molar ratio was investigated with silica and fly ash as fluxing agents. Higher reduction rates were obtained with fly ash fluxing instead of silica. The optimal conditions were derived as: reaction temperature 1,300°C, reaction time 75 min, particle size 48–75 µm, carbon excess coefficient 1.2, and silicon–calcium molar ratio 1.2. The optimized process condition was verified with other two different phosphate rocks and it was proved universally. The apparent kinetics analyses demonstrated that the activation energy of fly ash fluxing is reduced by 31.57 kJ/mol as compared with that of silica. The mechanism of better fluxing effect by fly ash may be ascribed to the fact that the products formed within fly ash increase the amount of liquid phase in the reaction system and promote reduction reaction. Preliminary feasibility about the recycling of industrial waste fly ash in thermal phosphoric acid industry was elucidated in the paper.


2012 ◽  
Vol 9 (2) ◽  
pp. 545-552 ◽  
Author(s):  
Yan-Hua Cai ◽  
Shun-Jiang Li

N-(benzoyl) stearic acid hydrazide was synthesized from benzoyl hydrazine and stearyl chloride which was deprived from stearic acid via acylation. The structure of the compound had been characterized by FT-IR,1H NMR, at the same time, the structure of N-(benzoyl) stearic acid hydrazide was optimized by the semiempirical method PM3. The influence of the reaction ratio, reaction time and reaction temperature to the yield ofN-(benzoyl) stearic acid hydrazide was investigated by orthogonal experiment, and the optimized reaction condition was molar ratio of benzoyl hydrazine: stearyl chloride 1:1, reaction time 6 h, reaction temperature 70°C, and the yield was 92.9%. The TGA thermal analysis of N-(benzoyl) stearic acid hydrazide showed that thermal stability ofN-(benzoyl) stearic acid hydrazide was affected by heating rate, and theN-(benzoyl) stearic acid hydrazide enhanced the tensile strength, modulus and elongation at break of Poly(L-lactic acid)(PLLA).


2011 ◽  
Vol 682 ◽  
pp. 55-59
Author(s):  
Nan Chun Chen ◽  
Wei Wang ◽  
Ai Ping Deng ◽  
Han Mei Ao ◽  
Quan Hong Li

Mullite nanocomposite was synthesized using kaolin with different Si/Al molar ratios in the range of 1.1- 4.31. The synthesized samples were analyzed and characterized using XRD and SEM techniques and effects of Si/Al molar ratio on mullite nanocrystal morphology have been investigated. SEM results showed that the mullite nanocomposite synthesized from kaolin with different Si/Al molar ratios had different morphologies and distribution patterns of particle size. It was found that the mullite nanocrystals with relatively homogenous grain-size distribution, low aspect ratio, and little agglomeration were produced from the precursors made from kaolin with a Si/Al ratio of 1.1-2.33 at calcination temperature of 1100-1250 oC.


2020 ◽  
Vol 9 (1) ◽  
pp. 349-358
Author(s):  
Biwei Luo ◽  
Pengfei Li ◽  
Yan Li ◽  
Pengpeng He ◽  
Jun Ji ◽  
...  

AbstractPhosphorus extraction from phosphorus rock was conducted by carbothermal reduction with silica and coke. The effects of reaction temperature, reaction time, coke excess coefficient, molar ratio of silicon–calcium, and phosphorus rock particle size on the phosphorus reduction rate were investigated by the response surface methodology (RSM). The central composite design (CCD) with five factors and five levels was used to explore the effects of variables’ interactions on the phosphorus reduction rate. The results showed that there are significant interactions between reaction time and temperature; reaction temperature and molar ratio of silicon–calcium; reaction temperature and phosphorus rock particle size; coke excess coefficient and molar ratio of silicon–calcium; and coke excess coefficient and phosphorus rock particle size. The optimum conditions in the experimental range are reaction time 92 min, reaction temperature 1340°C, coke excess coefficient 1.27, molar ratio of silicon–calcium 1.28, and phosphorus rock particle size 75–106 µm, which were derived from the quadratic statistic model. Under these conditions, the phosphorus reduction rate can reach 96.88%, which is close to the model prediction value 99.40%. The optimized carbothermal reduction conditions of phosphorus rock by the RSM are helpful to reduce the energy cost of thermal phosphoric acid process.


2013 ◽  
Vol 864-867 ◽  
pp. 690-693
Author(s):  
Wu Zhang ◽  
Lina Hou ◽  
Ling Li ◽  
Yun Dong Fang ◽  
Chun Zheng Song ◽  
...  

High acrylamide content hydrogel was synthesized under mild condition through a copolymerization reaction between acrylic acid (AA) and acrylamide (AM) using N, N-methylenebis-acrylamide as crosslinker and potassium persulfate combination with sodium sulfite as initiator in aqueous solution. The factors with influence on water absorbency performance including molar ratio of AM to AA, neutralization degree, content of crosslinker and initiator were investigated. Further orthogonal experiment with four factors and three levels were employed to determine the optimized conditions, in which not only water absorbency but also gel strength was taken into account.


1994 ◽  
Vol 346 ◽  
Author(s):  
C.H. Lin ◽  
C.W. Huang ◽  
S.C. Chang

ABSTRACTHydroxyapatite (Ca5(P04)3(0H)) is an effective material for artificial human bone production. Hydroxyapatite powders were hydrothermally produced in this work by reacting Ca(OH)2 with Na3PO4·12H2O in an autoclave at various temperature and for various times. The particle size of hydroxyapatite was observed to be very fine, uniform, around 50 nm, as well as independent of reaction time.The hydroxyapatite powders were compacted and sintered at various temperatures for 2 hrs. The density, grain size, and hardness of the hydroxyapatite ceramics were measured and compared with those of the hydroxyapatite ceramics produced by the powders from the commercial source. The hydroxyapatite ceramics from the hydrothermal powders were found to have a higher density, smaller grain size, and higher hardness.After the hydroxyapatite ceramics were dipped in a simulated biological body liquid for 10 days, the density and hardness of the hydrooxyapatite ceramics from the hydrothermal powders were less deteriorated than those of the hydroxyapatite ceramics from the commercial powder.


2019 ◽  
Vol 52 (12) ◽  
pp. 125501 ◽  
Author(s):  
Mohsen Ameri ◽  
Ezeddin Mohajerani ◽  
Mashhood Ghafarkani ◽  
Nasser Safari ◽  
S Ali Alavi

Sign in / Sign up

Export Citation Format

Share Document