Microstructure and Properties Formed at Different Cooling Rates of Low Carbon Alloy Steel for Welding Wire Production

2020 ◽  
Vol 304 ◽  
pp. 99-106
Author(s):  
Natalya Koptseva ◽  
Yulia Efimova ◽  
Mikhail Chukin ◽  
Alexander Pesin ◽  
N. Tokareva ◽  
...  

Physical simulation of steel Mn3Ni1CrMo continuous cooling with different speeds from austenitic state was performed using GLEEBLE 3500 complex. The phase transformations are analyzed and the effect of the cooling rate on the structure and hardness is investigated. A continuous cooling transformation diagram of the undercooled austenite decomposition is constructed. It was concluded that it is possible to reduce the hardness of the hot-rolled billet by reducing the cooling rate compared to the existing in the processing at the STELMOR line of PJSC “MMK”, and this will eliminate the heat treatment of welding wire on the hardware processing.

Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1562
Author(s):  
Zhenglei Tang ◽  
Ran Guo ◽  
Yang Zhang ◽  
Zhen Liu ◽  
Yuezhang Lu ◽  
...  

The expansion curves of the continuous cooling transformation of undercooled austenite of SXQ500/550DZ35 hydropower steel at different heating temperatures and cooling rates were measured by use of a DIL805A dilatometer. Combined with metallography and Vickers hardness measurement, the continuous cooling transformation diagrams (CCT) of the studied steel under two different states were determined. The results show that in the first group of tests, after the hot-rolled specimens were austenitized at 920 °C, when the cooling rate was below 1 °C·s−1, the microstructure was composed of ferrite (F), pearlite (P) and bainite (B). With the cooling rates between 1 °C·s−1 and 5 °C·s−1, the microstructure was mainly bainite, and martensite (M) formed as the cooling rate reached 5 °C·s−1. When the cooling rate was up to 10 °C·s−1, the microstructure was completely martensite and the hardness value increased significantly. In the second group of tests, after the hot-rolled specimens were quenched at 920 °C and then heated at an intercritical temperature of 830 °C, in comparison with the first group of tests, and except for additional undissolved ferrites in each cooling rate range, the other microstructure types were basically the same. Due to the existence of undissolved ferrite, the microstructures of the specimens heated at intercritical temperatures were much finer, and the toughness values at low temperatures were better.


2011 ◽  
Vol 418-420 ◽  
pp. 523-527
Author(s):  
Li Wei Duan ◽  
Yun Li Feng ◽  
Xue Jing Qi

Continuous cooling transformation rules of Low Carbon-Manganese Steel were investigated on Gleeble-3500 thermomechanical simulator. The study indicates that as cooling rate increases, Ar3 loweres and Ar1 behaves similarly but much slowly. The microstructure composes of dominant ferrite and some pearlite. As cooling rate enhances, the ferritic grain become finer, when cooling rate is up to 30°C/s, a little bainite appears. With the increasing of cooling rate the dimension of ferrite decreases. Under the experimental deformation conditions, ferritic grain refinement gets weak when the cooling rate is greater than or equal to 20°C/s. Therefore, with a certain strain, ferritic grain can refined to some degree by accelerated cooling.


Metals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 939 ◽  
Author(s):  
Yun Zong ◽  
Chun-Ming Liu

In order to provide important guidance for controlling and obtaining the optimal microstructures and mechanical properties of a welded joint, the continuous cooling transformation diagram of a new low-carbon Nb-microalloyed bainite E550 steel in a simulated coarse-grain heat-affected zone (CGHAZ) has been constructed by thermal dilatation method in this paper. The welding thermal simulation experiments were conducted on a Gleeble-3800 thermo-mechanical simulator. The corresponding microstructure was observed by a LEICA DM2700M. The Vickers hardness (HV) and the impact toughness at −40 °C were measured according to the ASTM E384 standard and the ASTM E2298 standard, respectively. The experimental results may indicate that the intermediate temperature phase transformation of the whole bainite can occur in a wide range of cooling rates of 2–20 °C/s. In the scope of cooling rates 2–20 °C/s, the microstructure of the heat-affected zone (HAZ) mainly consists of lath bainite and granular bainite. Moreover, the proportion of lath bainite increased and granular bainite decreased as the cooling rate increasing. There is a spot of lath martensite in the microstructure of HAZ when the cooling rate is above 20 °C/s. The Vickers hardness increases gradually with the increasing of the cooling rate, and the maximum hardness is 323 HV10. When the cooling time from 800 °C to 500 °C (t8/5) is 5–15 s, it presents excellent −40 °C impact toughness (273–286 J) of the CGHAZ beyond the base material (163 J).


2013 ◽  
Vol 652-654 ◽  
pp. 947-951
Author(s):  
Hui Li ◽  
Yun Li Feng ◽  
Da Qiang Cang ◽  
Meng Song

The static continuous cooling transformation (CCT)curves of 3.15 Si-0.036 C-0.21 Mn-0.008 S-0.008 N-0.022 Al are measured on Gleeble-3500 thermal mechanical simulator, the evolution of microstructure and the tendency of hardness are investigated by optical microscope (OM) and hardness tester. The results show that there is no evident change in microstructure which mainly are ferrite and little pearlite under different cooling rates, but the transition temperature of ferrite is gradually reduced with the increase of cooling rate. When the cooling rate is increased from 0.5°C/s to 20°C/s, the ending temperatures of phase transformation are decreased by 118°C, when cooling rate reaches to 10, Widmanstatten ferrite appears. The hardness of the steel turns out gradual upward trend with the increase of cooling rate.


2020 ◽  
Vol 835 ◽  
pp. 58-67
Author(s):  
Mohammed Ali ◽  
Antti J. Kaijalainen ◽  
Jaakko Hannula ◽  
David Porter ◽  
Jukka I. Kömi

The effect of chromium content and prior hot deformation of the austenite on the continuous cooling transformation (CCT) diagram of a newly developed low-carbon bainitic steel has been studied using dilatometer measurements conducted on a Gleeble 3800 simulator with cooling rates ranging from 2-80 °C/s. After austenitization at 1100 °C, specimens were either cooled without strain or given 0.6 strain at 880 °C prior to dilatometer measurements. The resultant microstructures have been studied using laser scanning confocal microscopy, scanning electron microscopy and macrohardness measurements. CCT and deformation continuous cooling transformation (DCCT) diagrams were constructed based on the dilatation curves, final microstructures and hardness values. Depending on the cooling rate, the microstructures of the investigated steels after cooling from the austenite region consist of one or more of the following microstructural components: lath-like upper bainite, i.e. bainitic ferrite (BF), granular bainite (GB), polygonal ferrite (PF) and pearlite (P). The proportion of BF to GB as well as the hardness of the transformation products decreased with decreasing cooling rate. The cooling rate at which PF starts to appear depends on the steel composition. With both undeformed and deformed austenite, increasing the chromium content led to higher hardenability and refinement of the microstructure, promoting the formation of BF and shifting the ferrite start curve to lower cooling rates. Prior hot deformation shifted the transformation curves to shorter times and higher temperatures and led to a reduction in hardness at the low cooling rates through the promotion of ferrite formation.


2019 ◽  
Vol 944 ◽  
pp. 303-312
Author(s):  
Li Zhang Li ◽  
He Wei ◽  
Lin Lin Liao ◽  
Yin Li Chen ◽  
Hai Feng Yan ◽  
...  

Gear steel is a ferritic steel. In the rolling process, the ideal structure is ferrite + pearlite, and bainite or martensite is not expected. However, due to the high alloy content, the hardenability is good, and the bainite or martensite structure is very likely to be generated upon cooling after rolling. In this paper, phase transformation rules during continuous cooling of 20CrMnTi with and without deformation were studied to guide the avoidance of the appearance of bainite or martensite in steel. A combined method of dilatometry and metallography was adopted in the experiments, and the dilatometer DIL805A and thermo-simulation Gleeble3500 were used. Both dynamic and static continuous cooling transformation (CCT) diagrams were drawn by using the software Origin. The causes of those changes in starting temperature, finishing temperature, starting time and transformation duration in ferrite-pearlite phase transformation were analyzed, and the change in Vickers hardness of samples with different cooling rate was discussed. The results indicate that with different cooling rate, there are three phase transformation zones: ferrite-pearlite, bainite and martensite. Deformation of austenite accelerates the occurrence of transformation obviously and moves CCT curve to left and up direction. When the cooling rate is lower than 1 °C/s, the phases in samples are mainly ferrite and pearlite, which is the ideal microstructure of experimental steel. As the cooling rate increases, starting temperature of ferrite transformation in steel decreases, starting time reduces, transformation duration gradually decreases, and the Vickers hardness of samples increases. Under the cooling rate of 0.5 °C/s, ferrite transformation in deformed sample starts at 751.67 °C, ferrite-pearlite phase transformation lasts 167.9 s, and Vickers hardness of sample is 183.4 HV.


2012 ◽  
Vol 476-478 ◽  
pp. 316-320
Author(s):  
Yan Mei Li ◽  
Zheng Tao Duan ◽  
Fu Xian Zhu

The effects of boron on the undercooled austenite transformation of low carbon Mn-Nb steels during continuous cooling were investigated in this study. Five kinds of steel specimens were fabricated by varying boron contents. Continuous cooling transformation (CCT) curves of the investigated steels under deformed conditions were constructed by a combination of deformation dilatometry and metallographic methods. The results indicated that a small amount of boron efficiently increased the hardenability of steels and lowered transformation temperature, which leading to a finer bainite microstructure and an increase in hardness.


2014 ◽  
Vol 1035 ◽  
pp. 27-35
Author(s):  
Yu Pei ◽  
Zhe Gao ◽  
Yi Liu ◽  
Shi Qian Zhao ◽  
Chang Yu Xu ◽  
...  

Phase transformation of austenite continuous cooling process in low carbon high strength sheet steel has been researched by DIL805 thermal mechanical simulate. The Austenite continuous cooling transformation (CCT) diagram of steel has been determined by dilatometry and metallography. With the increase of cooling rate, ferritic transformation, perlitic transformation, bainite transformation and martensitic transformation have produced in the organization. Mathematical equations of phase transformation point-cooling rate and phase variable-cooling rate have been established and phase transformation model of high fit degree has been gained by regression calculation. The results show that calculated value and experimental value are nearly similar, so the phase transformation model is feasible.


2013 ◽  
Vol 652-654 ◽  
pp. 967-970 ◽  
Author(s):  
Jun Cheng Bao ◽  
Jun Xing Ma ◽  
Jie Zhao ◽  
Bao Qun Ning

The transformation behavior of Nb-Ti micro-alloyed low carbon steel during continuous cooling was studied trough thermomechanical simulator and metallographic analysis. The results show that the dynamic CCT diagrams shift to the left and upper compared with the static ones, the begin temperature of γ→α transformation is gradually lower with the increase of cooling rate. The high temperature deformation improves Ferrite and Pearlite transformation, also improves Bainite transformation and decreases ferrite transformation zone. The rapid cooling can obtain better obdurability mixed microstructure of Martensite and Bainite within a certain cooling rate after deformation.


2020 ◽  
Vol 10 (1) ◽  
pp. 344 ◽  
Author(s):  
Mohammed Ali ◽  
Tun Nyo ◽  
Antti Kaijalainen ◽  
Jaakko Hannula ◽  
David Porter ◽  
...  

The effect of chromium content in the range of 1 wt.%–4 wt.% on the microstructure and mechanical properties of controlled-rolled and direct-quenched 12 mm thick low-carbon (0.04 wt.%) steel plates containing 0.06 wt.% Nb has been studied. In these microalloyed 700 MPa grade steels, the aim was to achieve a robust bainitic microstructure with a yield strength of 700 MPa combined with good tensile ductility and impact toughness. Continuous cooling transformation diagrams of deformed and non-deformed austenite were recorded to study the effect of Cr and hot deformation on the transformation behavior of the investigated steels. Depending on the cooling rate, the microstructures consist of one or more of the following microstructural constituents: bainitic ferrite, granular bainite, polygonal ferrite, and pearlite. The fraction of bainitic ferrite decreases with decreasing cooling rate, giving an increasing fraction of granular bainite and polygonal ferrite and a reduction in the hardness of the transformation products. Polygonal ferrite formation depends mainly on the Cr content and the cooling rate. In both deformed and non-deformed austenite, increasing the Cr content enhances the hardenability and refines the final microstructure, shifting the ferrite start curve to lower cooling rates. Preceding austenite deformation promotes the formation of polygonal ferrite at lower cooling rates, which leads to a decrease in hardness. In hot-rolled and direct-quenched plates, decreasing the Cr content promotes the formation of polygonal ferrite leading to an increase in the impact toughness and elongation but also a loss of yield strength.


Sign in / Sign up

Export Citation Format

Share Document