Cooling Curve Analysis of A356 Alloy by Conventional Casting and the Effect of Stirring

2022 ◽  
Vol 327 ◽  
pp. 300-305
Author(s):  
Gerardo Sanjuan-Sanjuan ◽  
Ángel Enrique Chavez-Castellanos

The present investigation attempted to explore the effect of stirring during solidification of Aluminum A356 alloy, mainly focusing on the change from dendrite to globular structure. For this purpose samples of A356 alloy were melted in the electrical resistance furnace and cooling curves were recorded for each level agitation. The experimental curves were numerically processed by calculating first and second derivatives. From these were determined temperatures and times of start nucleation of alpha solid and eutectic reaction.

2014 ◽  
Vol 884-885 ◽  
pp. 273-276
Author(s):  
Seok Jae Lee

The effect of the latent heat related to the rate of the solidification kinetics during solidification was investigated by using the heat transfer simulation. The latent heat was generated proportional to the amount of the fraction of transformed solid phase and directly affected the temperature compensation during solidification. The importance of the solidification kinetics was discussed by comparing cooling curves calculated using different solidification kinetics with experimentally measured cooling curve of A356 alloy.


2014 ◽  
Vol 20 (2) ◽  
pp. 107-118 ◽  
Author(s):  
Mehdi Dehnavi ◽  
Hosein Vafaeenezhad ◽  
Mohsen Haddad Sabzevar

Depending on the casting conditions and alloy composition, microstructure and properties of the aluminium alloys will be different. There are many techniques available for investigating the solidification of metals and alloys. In recent years computer-aided cooling curve analysis (CA-CCA) has been used to determine thermophysical properties of alloys, latent heat and solid fraction. The aim of this study was to investigate the effect of cooling rate on the structural features of Al-4.8 wt.%Cu alloy by thermal analysis of cooling curves. To do this, Al-4.8 wt.%Cu alloy was melted and solidified applying 0.04, 0.42, and 1.08 °C/sec cooling rates. The temperature of the samples was recorded using a K thermocouple and a data acquisition system connected to a PC. It was found that the formation temperatures of various thermal parameters such as (liquidus, solidus and eutectic temperatures) are shifting by increasing of cooling rate from 0.04 °C/sec to 1.08 °C/sec. The structural results show that grain size and secondary dendrite arm spacing decreased by increasing of cooling rate. 


2014 ◽  
Vol 20 (4) ◽  
pp. 235-246 ◽  
Author(s):  
Mile B. Djurdjević ◽  
Srećko Manasijević

The present work displays the potential of cooling curve analysis to characterize the solidification path of cast hypoeutectic series of Al-Si6-Cu(1−4 wt.%) and Al-Si8- Cu(1−4 wt.%) alloys. The aim of this work was to examine how variation in chemical composition of silicon and copper may affect characteristic solidification temperatures, fraction solid, and thermal freezing range of investigated alloys. Eight different Al−Si−Cu alloys (Al-Si6-Cu1, Al-Si6-Cu2, Al-Si6-Cu3, Al-Si6-Cu4, Al-Si8-Cu1, AlSi8-Cu2, Al-Si8-Cu3 and Al-Si8-Cu4) have been analyzed applying cooling curve analysis technique. Characteristic solidification temperatures have been determined using cooling curves or their corresponding first derivative curves along with ΔT curves. Fraction solid curves determined from recorded cooling curves have been used to calculate terminal freezing range and estimate crack susceptibility coefficient for each alloy. Theoretical mode for prediction of the cracking susceptibility coefficient developed by Clyne and Davies has been considered in this work. In addition, a novel mathematical model for prediction of crack susceptibility coefficient based on data collected from cooling curve analysis has been proposed. 


2011 ◽  
Vol 264-265 ◽  
pp. 1868-1877 ◽  
Author(s):  
Farshad Akhlaghi ◽  
Amir H.S. Farhood

Semi-solid processing (SSP) technology, due to its ability to provide near-net-shape components with properties far exceeding those of other casting technologies is considered as an alternative for forgings and investment castings. Conventional semi-solid forming, involving the use of heated billets, melt stirring or using cooling slopes require many processing steps and supplementary equipments. This article describes Narrow Melt Stream (NMS), as an alternative process for semi-solid processing of aluminum alloys that eliminates capital cost expenditures, reduces the number of steps required, and hence reduces the costs of making components with a globular structure. However, the applicability of this technique in producing globular structures in the large molds has not been explored. In the present study the results of a systematic investigation on the effects of mold size on the size and morphology of the globular structures formed by NMS processing of Al 356 alloy is reported. For this purpose, five different series of molds were employed. Each series consisted of three molds with identical volumes but different casting moduluses. By using these molds, the effects of casting modulus at constant casting size as well as the effect of casting volume on the size and shape factor of the globular structures in aluminum A356 samples prepared by NMS technique is reported.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 846
Author(s):  
Iuliana Stan ◽  
Denisa Anca ◽  
Stelian Stan ◽  
Iulian Riposan

The solidification cooling curve itself as well as its first derivative, and related temperatures, reported to the calculated equilibrium temperatures in stable and metastable solidification systems, are used to predict the solidification characteristics of the cast iron. Silicon, as the most representative cast iron element, and inoculation, as graphitizing metallurgical treatment, have a major influence on the transition from the liquid to the solid state. Six experimental programs are performed, with Si content typically for non-alloyed (<3.0% Si), low (3.0–3.5% Si) and medium alloyed (4.5–5.5% Si) ductile cast irons, as Si-content increasing, and inoculation simultaneous effects. Silicon is an important influencing factor, but the base and minor elements also affect the equilibrium eutectic temperatures, much more in the Fe-C-Si-Xi stable system (15–20 °C) than in the metastable system (5–10 °C), comparing with their calculation based only on a Si effect (Fe-C-Si system). The highest positive effect of inoculation is visible in non-Si alloyed cast irons (2.5% Si): 9–15 °C for the eutectic reaction and 3 to 4 times increased at the end of solidification (37–47 °C). Increased Si content decreases inoculation power to 7–9 °C for low alloying grade (up to 3.5% Si), with the lowest contribution at more than 4.5% Si (0.3–2.0 °C). 2.5–3.5% Si ductile cast irons are more sensitive to high solidification undercooling, especially at the end of solidification (but with a higher efficiency of inoculation), compared to 4.5–5.5% Si ductile cast irons, at a lower undercooling level, and at lower inoculation contribution, as well.


2019 ◽  
Vol 140 (4) ◽  
pp. 1825-1836 ◽  
Author(s):  
Carlos González-Rivera ◽  
Anthony Harrup ◽  
Carla Aguilar ◽  
Adrián M. Amaro-Villeda ◽  
Marco A. Ramírez-Argáez

2011 ◽  
Vol 266 ◽  
pp. 102-105
Author(s):  
Li Feng Sun ◽  
Hong Po Wang ◽  
Chun Lai Liu ◽  
Yong Zou ◽  
Mao Fa Jiang

Basic tundish covering flux is widely used in continuous casting production of high quality steel because of good heat insulation function and the properties of absorbing inclusions. However, there is a serious problem of incrustation caused by basic tundish covering flux in process of pouring and it could be dramatically influenced by the crystallization behaviors of covering flux. In the paper, the crystallization time and ratio of basic tundish covering fluxes were investigated by high temperature electrical resistance furnace and single hot thermocouple apparatus. Based on the crystallization kinetic knowledge and experimental results, Avrami equation was modified, the non-isothermal crystallization equation that could quantitatively describe the crystallization behaviors of basic tundish covering fluxes was established.


JOM ◽  
2011 ◽  
Vol 63 (11) ◽  
pp. 51-57 ◽  
Author(s):  
Mile B. Djurdjevic ◽  
Zoran Odanovic ◽  
Nadezda Talijan

Sign in / Sign up

Export Citation Format

Share Document