Innovative Strategy Using Alternative Fecal Indicators (F+RNA/Somatic Coliphages, Clostridium perfringens) to Detect Cesspool Discharge Pollution in Streams and Receiving Coastal Waters Within a Tropical Environment

2011 ◽  
Vol 45 (2) ◽  
pp. 101-111 ◽  
Author(s):  
Gayatri Vithanage ◽  
Roger S. Fujioka ◽  
Gary Ueunten

AbstractStandards based on fecal indicator bacteria (FIB) have traditionally been used by the U.S. Environmental Protection Agency to determine when recreational waters are contaminated by fecal and sewage inputs. Studies in tropical and subtropical areas, however, have shown that these same standards cannot reliably be used in these environments to determine when waters are contaminated by sewage. This is because soil, sediments, water, and plants have been shown to be significant indigenous sources of FIB in tropical/subtropical climates. In these climates, alternative fecal indicators, such as Clostridium perfringens and F+RNA coliphages, may be more reliable markers of sewage contamination, because these organisms are generally found in low concentrations in the environment. In the State of Hawaii, monitoring data relating to FIB (fecal coliform, Escherichia coli, enterococci) and alternative indicator microorganisms (C. perfringens, F+RNA) in recreational waters has been obtained for the Island of Oahu, but similar data are lacking for other islands within the state. The major goal of this study was to monitor water samples obtained from the Nawiliwili watershed on the Island of Kauai for traditional FIB (fecal coliform and enterococci) as well as alternative fecal microbial indicators (C. perfringens, somatic coliphages, and F+RNA coliphages). Results for FIB concentrations on the Island of Kauai followed a similar trend as data obtained from the Island of Oahu. In addition, in areas like the Island of Kauai where cesspools are prevalent, monitoring for F+RNA and somatic coliphages may provide more reliable data in the detection of subsurface contamination of streams by cesspool waste, which can then lead to the pollution of coastal waters. Finally, genotyping of F+RNA phages obtained from the study sites provided additional evidence that human cesspool contamination was occurring within the Nawiliwili watershed.

2020 ◽  
Vol 17 (1) ◽  
Author(s):  
Brian R. McMinn ◽  
Eric R. Rhodes ◽  
Emma M. Huff ◽  
Asja Korajkic

Abstract Background Sanitary quality of recreational waters worldwide is assessed using fecal indicator bacteria (FIB), such as Escherichia coli and enterococci. However, fate and transport characteristics of FIB in aquatic habitats can differ from those of viral pathogens which have been identified as main etiologic agents of recreational waterborne illness. Coliphages (bacteriophages infecting E. coli) are an attractive alternative to FIB because of their many morphological and structural similarities to viral pathogens. Methods In this in situ field study, we used a submersible aquatic mesocosm to compare decay characteristics of somatic and F+ coliphages to those of infectious human adenovirus 2 in a freshwater lake. In addition, we also evaluated the effect of ambient sunlight (and associated UV irradiation) and indigenous protozoan communities on decay of somatic and F+ coliphage, as well as infectious adenovirus. Results Our results show that decay of coliphages and adenovirus was similar (p = 0.0794), indicating that both of these bacteriophage groups are adequate surrogates for decay of human adenoviruses. Overall, after 8 days the greatest log10 reductions were observed when viruses were exposed to a combination of biotic and abiotic factors (2.92 ± 0.39, 4.48 ± 0.38, 3.40 ± 0.19 for somatic coliphages, F+ coliphages and adenovirus, respectively). Both, indigenous protozoa and ambient sunlight, were important contributors to decay of all three viruses, although the magnitude of that effect differed over time and across viral targets. Conclusions While all viruses studied decayed significantly faster (p < 0.0001) when exposed to ambient sunlight, somatic coliphages were particularly susceptible to sunlight irradiation suggesting a potentially different mechanism of UV damage compared to F+ coliphages and adenoviruses. Presence of indigenous protozoan communities was also a significant contributor (p value range: 0.0016 to < 0.0001) to decay of coliphages and adenovirus suggesting that this rarely studied biotic factor is an important driver of viral reductions in freshwater aquatic habitats.


1999 ◽  
Vol 40 (4-5) ◽  
pp. 369-374 ◽  
Author(s):  
R. S. Fujioka ◽  
A. J. Bonilla ◽  
G. K. Rijal

An auxiliary Wetland Reclamation Facility (WRF) was constructed to receive stabilization pond treated sewage and further treat it with water hyacinth ponds, chemical flocculation, filtration and ultraviolet light disinfection. This was the first facility in Hawaii which was approved to produce the highest quality reclaimed water using alternative treatment schemes. We assessed the effectiveness of the WRF by monitoring water samples after each of the WRF treatment schemes for five genetically different groups of sewage borne microorganisms (fecal coliform, enterococci, C. perfringens, FRNA phage, total heterotrophic bacteria). The concentrations of all fecal indicator microoganisms, especially FRNA phase were low in the influent water to the WRF indicating that extended pond treatment may be especially effective in removing human viruses from sewage. The WRF treatment scheme was calculated to be able to reduce &gt;99.99% of fecal coliform and therefore was able to produce an effluent meeting the non-potable, unrestricted reuse standard of a geometric means of &lt;1 fecal coliform/100 ml.


2011 ◽  
Vol 77 (19) ◽  
pp. 6972-6981 ◽  
Author(s):  
Ryan J. Newton ◽  
Jessica L. VandeWalle ◽  
Mark A. Borchardt ◽  
Marc H. Gorelick ◽  
Sandra L. McLellan

ABSTRACTThe complexity of fecal microbial communities and overlap among human and other animal sources have made it difficult to identify source-specific fecal indicator bacteria. However, the advent of next-generation sequencing technologies now provides increased sequencing power to resolve microbial community composition within and among environments. These data can be mined for information on source-specific phylotypes and/or assemblages of phylotypes (i.e., microbial signatures). We report the development of a new genetic marker for human fecal contamination identified through microbial pyrotag sequence analysis of the V6 region of the 16S rRNA gene. Sequence analysis of 37 sewage samples and comparison with database sequences revealed a human-associated phylotype within theLachnospiraceaefamily, which was closely related to the genusBlautia. This phylotype, termed Lachno2, was on average the second most abundant fecal bacterial phylotype in sewage influent samples from Milwaukee, WI. We developed a quantitative PCR (qPCR) assay for Lachno2 and used it along with the qPCR-based assays for humanBacteroidales(based on the HF183 genetic marker), totalBacteroidalesspp., and enterococci and the conventionalEscherichia coliand enterococci plate count assays to examine the prevalence of fecal and human fecal pollution in Milwaukee's harbor. Both the conventional fecal indicators and the human-associated indicators revealed chronic fecal pollution in the harbor, with significant increases following heavy rain events and combined sewer overflows. The two human-associated genetic marker abundances were tightly correlated in the harbor, a strong indication they target the same source (i.e., human sewage). Human adenoviruses were routinely detected under all conditions in the harbor, and the probability of their occurrence increased by 154% for every 10-fold increase in the human indicator concentration. Both Lachno2 and humanBacteroidalesincreased specificity to detect sewage compared to general indicators, and the relationship to a human pathogen group suggests that the use of these alternative indicators will improve assessments for human health risks in urban waters.


1975 ◽  
Vol 12 (02) ◽  
pp. 146-162
Author(s):  
J. A. Beverley ◽  
R. L. Koch ◽  
E. C. Stewart ◽  
J. Weiks

This paper describes the ac-rectified dc propulsion system designed for the two ferry vessels, MV Spokane and MV Walla Walla, and reports the results of an analog study conducted as a design tool. Similar data are presented showing the results obtained by recording electrical system performance during builder's trials.


2011 ◽  
Vol 83 (2) ◽  
pp. 575-588 ◽  
Author(s):  
Charrid Resgalla Jr

This paper presents information from different sampling surveys carried out along the Santa Catarina coast in order to outline the biogeographical characteristics of the zooplankton in this region and identify species or groups of species with potential use as bioindicators. Based on a checklist of species of the zooplankton community in the state, it was observed that, in the warmer months of the year, the fauna is similar to that of the states of Paraná and São Paulo (e.g. Creseis virgula f. virgula, Penilia avirostris; Acartia lilljeborgi and Oithona oswaldocruzi), while in the colder months there are coastal representatives of the fauna of Rio Grande do Sul (e.g. Acartia tonsa). However, the zooplankton consists predominantly of warm water species for most of the year, which is typical of Tropical Shelf Waters. Various species of zooplankton can be used as hydrological indicators, enabling a distinction to be made between coastal waters which are influenced by continental inputs (e.g. Paracalanus quasimodo and Parvocalanus crassirostris), common in the north of the state, and processes of upwelling (e.g. Podon intermedius) and the influence of the Subtropical Shelf Front (e.g. Pleopis polyphemoides), coming from the south. The different environments investigated present a zooplankton abundance that depends on the influence of continental inputs and the possibility of their retaining and contribution for the coastal enrichment, which varies seasonally


1999 ◽  
Vol 45 (3) ◽  
pp. 257-262 ◽  
Author(s):  
Christian Chauret ◽  
Susan Springthorpe ◽  
Syed Sattar

The extent of reduction in selected microorganisms was tested during both aerobic wastewater treatment and anaerobic digestion of sludge at the wastewater treatment plant in Ottawa to compare the removal of two encysted pathogenic protozoa with that of microbial indicators. Samples collected included the raw wastewater, the primary effluent, the treated wastewater, the mixed sludge, the decanted liquor, and the cake. All of the raw sewage samples were positive for Cryptosporidium oocysts and Giardia cysts, as well as for the other microorganisms tested. During aerobic wastewater treatment (excluding the anaerobic sludge digestion), Cryptosporidium and Giardia were reduced by 2.96 log10and 1.40 log10, respectively. Clostridium perfringens spores, Clostridium perfringens total counts, somatic coliphages, and heterotrophic bacteria were reduced by approximately 0.89 log10, 0.96 log10, 1.58 log10, and 2.02 log10, respectively. All of the other microorganisms were reduced by at least 3.53 log10. Sludge samples from the plant were found to contain variable densities of microorganisms. Variability in microbial concentrations was sometimes great between samples, stressing the importance of collecting a large number of samples over a long period of time. In all cases, the bacterial concentrations in the cake (dewatered biosolids) samples were high even if reductions in numbers were observed with some bacteria. During anaerobic sludge digestion, no statistically significant reduction was observed for Clostridium perfringens, Enterococcus sp., Cryptosporidium oocysts, and Giardia cysts. A 1-2 log10reduction was observed with fecal coliforms and heterotrophic bacteria. However, the method utilized to detect the protozoan parasites does not differentiate between viable and nonviable organisms. On the other hand, total coliforms and somatic coliphages were reduced by 0.35 log10and 0.09 log10, respectively. These results demonstrate the relative persistence of the protozoa in sewage sludge during wastewater treatment.Key words: Cryptosporidium, Giardia, indicators, wastewater, sludge.


Sign in / Sign up

Export Citation Format

Share Document