scholarly journals Analysis of X-shaped and Double X-shaped Metallic Dampers on Multistorey Frames

2020 ◽  
Vol 7 (1) ◽  
pp. 12
Author(s):  
U.D.D. Liyanage ◽  
T.N. Perera ◽  
H. Maneetes
Keyword(s):  
Structures ◽  
2021 ◽  
Vol 34 ◽  
pp. 4254-4268
Author(s):  
A. Farsi ◽  
H.R. Amiri ◽  
S.H. Dehghan Manshadi

2018 ◽  
Vol 763 ◽  
pp. 414-422 ◽  
Author(s):  
Tony Y. Yang ◽  
Winda Banjuradja ◽  
Lisa Tobber

Metallic dampers are one of the most prevalent structural components that are used to dissipate earthquake energy. A novel metallic damper, named Welded Wide Flange Fuse (WWFF), is proposed in this paper. WWFF utilizes commonly available welded wide flange sections to dissipate the earthquake energy through shear yielding of the web in the longitudinal direction, which makes the WWFF easy to be fabricated and efficient in providing high elastic stiffness and stable energy dissipation capacity. In this paper, a detailed experimental study was conducted to examine the influence on the design parameters (such as aspect ratios and slenderness ratios) on the component response (such as yielding force and elastic stiffness). The result shows that the WWFF has stable energy dissipation capacity which can be used as an efficient and robust metallic damper.


2010 ◽  
Vol 163-167 ◽  
pp. 3987-3991
Author(s):  
Jie Ying Sui ◽  
Weng Feng Liu ◽  
Yang Yang Zhang

In this paper, a new type of disk spring two-storey rolling seismic isolator was developed. The two-storey rolling isolator isolates horizontal earthquake with metallic dampers to restore to normal position, limit displacement and dissipate energy. The disk spring isolates vertical earthquake. Adopt MATLAB to build the shear model, and contrasts the earthquake response between the base-isolated structure and the unbase-isolated structure.


2016 ◽  
Vol 20 (1) ◽  
pp. 4-17 ◽  
Author(s):  
Liang Lu ◽  
Xia Liu ◽  
Junjie Chen ◽  
Xilin Lu

A controlled rocking reinforced concrete frame is a new type of vibration control structure system that uses resilient rocking columns and joints. The effects of earthquakes on this type of structure are reduced by weakening the overall stiffness, whereas the lateral displacement is controlled by the energy-dissipation dampers introduced into the structure. Two tests were performed for research: the reversed cyclic loading test and shaking table test. Two single-span single-story controlled rocking reinforced concrete frames were designed for reversed cyclic loading tests. These tests (i.e. a column-base joint stiffness test, beam-column joint stiffness test, and frame stiffness test) were performed under different conditions. The mechanical analysis model of the rocking joints was derived from the test results. With the parameters obtained from the cyclic tests, a numerical simulation method that established the analytical model of the controlled rocking reinforced concrete frame using the program ABAQUS is proposed, and the dynamic time-history analysis results of the controlled rocking reinforced concrete frame and of the conventional approach are compared to investigate the vibration control effect and seismic performance of the controlled rocking reinforced concrete frame. In addition, the inter-story drift could be effectively controlled by adding metallic dampers, and the shaking table test models of the controlled rocking reinforced concrete frame with metallic dampers were designed and constructed. The comparison of the results of the numerical analysis and the shaking table test demonstrates that the model building of the controlled rocking reinforced concrete frame structure is efficient and that the controlled rocking reinforced concrete frame exhibits an excellent seismic performance.


Author(s):  
Hong-Nan Li ◽  
Gang Li

Earthquake can make structures damaged and crumble. The traditional approach to seismic design has been based upon providing a combination of strength and ductility to resist the imposed loads. Thus, the level of the structure security cannot be achieved, because the disadvantage of the designing method is lack of adjusting capability subjected to an uncertain earthquake. The presence of some damping (energy dissipation) in buildings has been recognized and studied by professional researchers. Passive energy-dissipated system, as a category of vibration control methods, lead the inputting energy from earthquake to special element, thereby reducing energy-dissipating demand on primary structural members and minimizing possible structural damage. In this paper, a new idea of designing metallic damper is presented and realized through the improved dampers that are of a certain bearing forces in plane of plate and suitable energy-dissipating capability by making metallic dampers in different shapes. New types of metallic dampers are called as “dual functions” metallic damper (DFMD), because it not only provides certain stiffness in normal use for a building, but also are of good ability of the seismic energy-dissipation. The structural configuration and mechanical characteristics of the models and prototypes of the DFMDs are analyzed and experimented so as to verify the seismic performance of the dampers. Finally, the DFMDs applied to a new building in China are introduced and numerical results demonstrate the effectiveness of the DFMD.


Sign in / Sign up

Export Citation Format

Share Document