AERIAL SPRAYING OF A BACILLUS THURINGIENSIS — CHITINASE FORMULATION FOR CONTROL OF THE SPRUCE BUDWORM (LEPIDOPTERA: TORTRICIDAE)

1973 ◽  
Vol 105 (12) ◽  
pp. 1535-1544 ◽  
Author(s):  
W. A. Smirnoff ◽  
J. J. Fettes ◽  
R. Desaulniers

AbstractA 10,000 acre stand of mature balsam fir, in Temiscouata County, Quebec, which had a spruce budworm population of about 21 larvae/18 in. branch-tip was sprayed with a Bacillus thuringiensis + chitinase formulation. Aerial spraying was carried out by three TBM aircraft between 4 and 7 June 1972, when insect development was at the peak of the third instar. Where the quantity of B. thuringiensis colonies per square centimeter was higher than 77 and spray deposit higher than 0.4 gal/acre (U.S.), larval mortality was between 84% and 93% compared with between 39% and 53% in the check plot. Foliage protection was 47%. The results indicate the possibilities of using B. thuringiensis + chitinase to control spruce budworm infestations.

1977 ◽  
Vol 109 (9) ◽  
pp. 1239-1248 ◽  
Author(s):  
O. N. Morris

AbstractBacillus thuringiensis (Dipel® 36B) mixed with a sublethal concentration of acephate (Orthene®) (O, S-dimethyl acetylphosphoramidothioate), an organophosphorous insecticide, was applied at 2.35–14 l./ha to white spruce (Picea glauca) and balsam fir (Abies balsamea) trees infested with spruce budworm, Choristoneura fumiferana (Clem.). The treatment rate was 20 Billion International Units of B. thuringiensis (B.t.) activity with or without 42 g of active ingredient of acephate/ha.The ground deposit of the standard Dipel wettable powder formulation was 12% of emitted volume compared with 21–32% for the Dipel 36B flowable. The viability of B.t. spores was drastically reduced after 1 day of weathering but a high level of biological activity by the spore–crystal complex persisted for up to 20 days post-spray due probably to crystal activity.The addition of about 10% of the recommended operational rate of acephate to the B.t. suspension increased larval mortality by 34% when applied at 4.7 l./ha. Reductions in budworm populations were 97–99% in B.t. + acephate plots and 86–90% in B.t. alone plots.Plots with moderate budworm densities of up to 27 larvae/100 buds on white spruce and 36/100 on balsam fir were satisfactorily protected from excessive defoliation in the year of spray by B.t. with or without acephate. Plots with higher population densities were not satisfactorily protected based on the branch sample examination but aerial color photographs indicated good protection to the top third of the trees. Population declines were greater and defoliation and oviposition were lower in the treated plots than in the untreated checks 1 year later without further treatment. Two years later the larval population densities in all plots were low but the density was twice as high in the untreated check as in the treated plots, indicating long term suppression by the treatments. Defoliation was negligible in all plots.The treatments had no deleterious effect on spruce budworm parasitism. The data indicate that the integrated approach using Bacillus thuringiensis – chemical pesticide combinations is a viable alternative to the use of chemical pesticides alone in spruce budworm control. Large scale testing is now warranted.


1978 ◽  
Vol 54 (6) ◽  
pp. 309-312 ◽  
Author(s):  
W.A. Smirnoff

Action of Bacillus thuringiensis (B.t.) on spruce budworm, Choristoneura fumiferana Clem., was found to be attributable to septicemia with some enterotoxicosis. Development of a compact economical B.t. formulation, with addition of the enzyme chitinase, increased its efficiency by accelerating larval mortality. Between 1971 and 1975 field tests were conducted in balsam fir stands with different levels of insect density to select the best formulation and methods of application and to identify the major influencing environmental variables. Variability in the results prior to 1975 is attributable to difficulties with calibration of spray systems. With accurate calibration in 1976 and 1977, good results in terms of larval mortality and foliage protection were obtained, thus confirming the value of B.t. for control of spruce budworm.


1994 ◽  
Vol 126 (4) ◽  
pp. 1061-1065 ◽  
Author(s):  
Kees van Frankenhuyzen

AbstractThe relationship between temperature and pathogenesis of Bacillus thuringiensis Berliner var. kurstaki in infected larvae of the eastern spruce budworm, Choristoneura fumiferana Clem., was investigated to determine if more rapid death of larvae with an increase in temperature could be accounted for by enhanced bacterial growth. Cumulative mortality of larvae force-fed with a lethal dose of HD-1-S-1980 peaked within 2 days at 25 °C, 3 days at 19 °C, 7 days at 16 °C, and 21 days at 13 °C. The progress of bacterial growth in the larvae was followed from spore germination to cell lysis, and was completed within 4 days at 25 °C, 6 days at 22 °C, 12 days at 19 °C, 14 days at 16 °C, and > 28 days at 13 °C. Peak abundance of vegetative cells in the larvae was observed after 1 day at 25 °C, 2 days at 22 °C, 3 days at 19 °C, 7 days at 16 °C, and 21 days at 13 °C, and thus coincided almost exactly with the time required for maximum larval mortality. This correlation suggests that the observed effect of temperature on progression of larval mortality was due to its effect on the proliferation of vegetative cells in the infected larvae, and that bacterial septicemia makes an important contribution to death.


1984 ◽  
Vol 116 (7) ◽  
pp. 983-990 ◽  
Author(s):  
O. N. Morris

AbstractThuricide and Dipel, formulations of Bacillus thuringiensis (B.t.), were applied aerially against the spruce budworm, Choristoneura fumiferana (Clem.), in forest stands of balsam fir, Abies balsamea L. A dosage of 30 Billion International Units (BIU) of B.t./ha applied in 2.4 to 4.7 L of spray/ha was most effective. Application of 20 BIU/ha was marginally effective against a population of 12 to 36 larvae/45 cm of branch.


1993 ◽  
Vol 125 (3) ◽  
pp. 479-488 ◽  
Author(s):  
Beresford L. Cadogan ◽  
Roger D. Scharbach

AbstractThe insecticide Foray 48B (Bacillus thuringiensis var. kurstaki Berliner) was applied undiluted at 30 BIU per ha to control spruce budworm, Choristoneura fumiferana (Clem.), in a mixed boreal forest stand of balsam fir, Abies balsamea (L.) Mill., and black spruce, Picea mariana (Mill.) B.S.P. When the treatment was timed to coincide with the early flushing of balsam fir shoots, the corrected budworm population reductions were 74 and 52% on balsam fir and black spruce, respectively. This treatment resulted in 19 and 8% defoliation on the two respective species. When the insecticide application was timed later to coincide with the late flushing of black spruce shoots the corrected population reductions were 93% on balsam fir and 72% on black spruce. Defoliation of the two species was 29 and 10% respectively, following this treatment. Larval survival on both species after the spray timed for black spruce (0.8 and 2.2 larvae per 45-cm branch on balsam fir and black spruce, respectively) was significantly less (P = 0.05) than that observed after the spray timed for balsam fir (4.6 and 4.2 larvae per 45-cm branch on the respective host species).The data indicate that the spray timed to correspond with the flushing of black spruce was generally more efficacious than the spray timed to impact on newly flushed balsam fir; nevertheless, the results raise the question as to how B. thuringiensis insecticides impact on early-instar budworm larvae when there is no preferred current year foliage on which the insects can feed.


1976 ◽  
Vol 108 (3) ◽  
pp. 225-233 ◽  
Author(s):  
O. N. Morris

AbstractSpruce budworm infested balsam fir trees were aerially sprayed with Bacillus thuringiensis – chitinase combinations at the rate of 4 Billion International Units of B.t. and 18 mg of enzyme in 0.5 gal/acre. Larvae were peak third instar at spray time. Deposit rates ranged from 1.07 to 3.26 BIU/acre. Efficacy of the treatments was assessed in the year of treatment and carry-over effects were assessed 1 year later.Results in the year of treatment indicated that: (1) Residual activity of B. thuringiensis was drastically reduced after 15 days’ exposure to weathering. (2) Larval mortality alone is not a suitable criterion of efficacy. (3) Dipel and Dipel + chitinase (but not Thuricide 16B or Thuricide + chitinase) were highly effective in reducing budworm densities. (4) Thuricide + chitinase treatment resulted in significant foliage protection. The treatments inhibited feeding in the following order of efficiency: Thuricide + chitinase > Dipel + chitinase > Dipel alone > chitinase alone > Thuricide alone. (5) There was no direct relationship between larval mortality and foliage protection in any of the treatments, likely due to delayed mortality effects. (6) No direct relationship exists between viable spore deposits and deposit of active ingredient (IUs). (7) B.t. treatments retarded development of the spruce budworm and reduced pupal weights, oviposition rates, and egg viability.Assessment of the plots 1 year after spray showed that the treatments apparently gave no long term protection from defoliation, but this was likely due in part to mass invasion of the test plots by moths from immediately surrounding untreated areas.


1960 ◽  
Vol 36 (3) ◽  
pp. 209-224 ◽  
Author(s):  
J. R. Blais ◽  
R. Martineau

The main topics discussed in this paper are: the progress of the spruce budworm outbreak in the Lower St. Lawrence - Gaspé regions from 1949 to 1956; the areas sprayed between 1954 and 1958; timing of spray application in relation to insect abundance and development; effects of treatment on spruce budworm populations and on defoliation of balsam fir; results of aerial defoliation surveys and egg surveys; estimated amounts of wood destroyed by the insect, and losses averted through spraying; the various natural control factors associated with the decline and the eventual collapse of the outbreak.


2000 ◽  
Vol 132 (4) ◽  
pp. 505-518 ◽  
Author(s):  
Kees van Frankenhuyzen ◽  
Carl Nystrom ◽  
John Dedes ◽  
Vern Seligy

AbstractA larval population of spruce budworm, Choristoneura fumiferana (Clemens), was monitored for 5 d following aerial application of a commercial formulation of Bacillus thuringiensis Berliner subsp. kurstaki to investigate dose acquisition and expression (larval mortality, recovery, feeding, and growth) in relation to spray deposition and persistence of spray deposits. The main objective was to test if previous laboratory observations on how B. thuringiensis affects feeding and dose ingestion by spruce budworm larvae hold true under field conditions. About 40% of the treated population ingested a lethal dose within 1 d after spray application. Lethally dosed larvae died without further feeding upon transfer from treated foliage to (untreated) artificial diet. Resumption of feeding by larvae that survived the treatment was delayed relative to larvae from the control population during 3 d following spray application; during that time, normal feeding activity and larval weight gain were suppressed. Inhibited feeding by survivors appeared to prevent further dose uptake because the proportion of lethally dosed larvae in daily collections did not increase despite significant residual spray deposits in budworm feeding sites. Restoration of "normal" recovery times by the fourth day coincided with a 65–85% reduction in persistence of the pathogen on the foliage and did not result in further lethal dose acquisition, as treatment-induced mortality dropped to about 20% on the 4th and 5th days. The observations are consistent with previous laboratory observations of how B. thuringiensis affects larval feeding and with the hypothesis that feeding inhibition may be a limiting factor in the acquisition of a lethal dose.


1983 ◽  
Vol 115 (4) ◽  
pp. 431-434
Author(s):  
O. N. Morris ◽  
A. Moore

AbstractLarval biomass of the spruce bud worm, Choristoneura fumiferana (Clem.), in balsam fir, Abies balsamea L., stands was significantly reduced following aerial applications of commercial Bacillus thuringiensis (B.t.) (Thuricide 16B®, 24B and 32BX and Dipel 85®). Treatment with Dipel vehicle (Dipel 88® without B.t.) did not affect larval biomass. Biomass reduction following the Thuricide treatment was directly related to feeding activity. These findings support published observations on the long-term effect of B.t. on budworm populations.


1978 ◽  
Vol 110 (2) ◽  
pp. 201-203 ◽  
Author(s):  
Paul G. Fast

AbstractThe addition of chitinase at the rate of 1000–4000 nephelometric units/U.S. gallon to Bacillus thuringiensis insecticide for use against spruce budworm has been advocated.Bioassays of V instar spruce budworm larvae against seven levels of Thuricide® at four levels of chitinase corresponding to 0, 22, 220, and 2200 nephelometric units/U.S. gallon were conducted by placing larvae on balsam fir foliage (Abies balsamea) dipped in appropriate dilutions of Thuricide® with chitinase. Mortality was assessed 6 days later. An additional replicated assay at a relatively massive dose of chitinase, 33,000 nephelometric units/U.S. gallon, was compared simultaneously with a 0 chitinase control. The data were homogeneous and linear by statistical standards. No effect of chitinase on LC50 or slope of the regression line was observed.


Sign in / Sign up

Export Citation Format

Share Document