ORIGINS OF THE NORTH AMERICAN EPHEMEROPTERA FAUNA, ESPECIALLY THE LEPTOPHLEBIIDAE

1988 ◽  
Vol 120 (S144) ◽  
pp. 13-24 ◽  
Author(s):  
William L. Peters

AbstractThe complex origins of the North American Ephemeroptera fauna extended from the Lower Permian to the Recent. This paper discusses origins of North American genera of the cosmopolitan family Leptophlebiidae with a few examples from other mayfly families. The two extant subfamilies, Leptophlebiinae and Atalophlebiinae, probably evolved at least by the mid-Cretaceous, or about 100 million years before present. The primitive Leptophlebiinae are distributed throughout most of the Northern Hemisphere and the ancestors of the Leptophlebia–Paraleptophlebia complex within this subfamily dispersed widely by the North Atlantic route as early as the mid-Cretaceous and later probably by northern trans-Pacific dispersals through Beringia. The ancestors of Habrophlebia dispersed through the North Atlantic route at an early time, but the vicariant distribution of Habrophlebiodes in several areas of the Oriental Region and eastern North America correlates with the Arcto-Tertiary forest that covered most of the Northern Hemisphere including Beringia from the Early Tertiary into the Pleistocene. Within the nearly cosmopolitan Atalophlebiinae, Traverella is austral in origin and probably dispersed north through the Mexican Transition Zone during the mid-Tertiary as an ancient dispersal and then dispersed to its northern and eastern limits following the last Pleistocene deglaciation by way of the Missouri River tributaries. Thraulodes and Farrodes are both austral in origin and probably dispersed north through the Mexican Transition Zone during the Early Pleistocene as a relatively recent dispersal. The origins of Choroterpes sensu stricto and Neochoroterpes in North America are unknown. The mayfly fauna of the West Indies is Neotropical in origins, and no affinities between the West Indies and North America through Florida have ever been confirmed.

2016 ◽  
Vol 29 (2) ◽  
pp. 659-671 ◽  
Author(s):  
Qi Hu ◽  
Michael C. Veres

Abstract This is the second part of a two-part paper that addresses deterministic roles of the sea surface temperature (SST) anomalies associated with the Atlantic multidecadal oscillation (AMO) in variations of atmospheric circulation and precipitation in the Northern Hemisphere, using a sequence of idealized model runs at the spring equinox conditions. This part focuses on the effect of the SST anomalies on North American precipitation. Major results show that, in the model setting closest to the real-world situation, a warm SST anomaly in the North Atlantic Ocean causes suppressed precipitation in central, western, and northern North America but more precipitation in the southeast. A nearly reversed pattern of precipitation anomalies develops in response to the cold SST anomaly. Further examinations of these solutions reveal that the response to the cold SST anomaly is less stable than that to the warm SST anomaly. The former is “dynamically charged” in the sense that positive eddy kinetic energy (EKE) exists over the continent. The lack of precipitation in its southeast is because of an insufficient moisture supply. In addition, the results show that the EKE of the short- (2–6 day) and medium-range (7–10 day) weather-producing processes in North America have nearly opposite signs in response to the same cold SST anomaly. These competing effects of eddies in the dynamically charged environment (elevated sensitivity to moisture) complicate the circulation and precipitation responses to the cold SST anomaly in the North Atlantic and may explain why the model results show more varying precipitation anomalies (also confirmed by statistical test results) during the cold than the warm SST anomaly, as also shown in simulations with more realistic models. Results of this study indicate a need to include the AMO in the right context with other forcings in an effort to improve understanding of interannual-to-multidecadal variations in warm season precipitation in North America.


Antiquity ◽  
2006 ◽  
Vol 80 (307) ◽  
pp. 130-144 ◽  
Author(s):  
T. Douglas Price ◽  
Hildur Gestsdóttir

The colonisation of the North Atlantic from the eighth century AD was the earliest expansion of European populations to the west. Norse and Celtic voyagers are recorded as reaching and settling in Iceland, Greenland and easternmost North America betweenc. AD 750 and 1000, but the date of these events and the homeland of the colonists are subjects of some debate. In this project, the birthplaces of 90 early burials from Iceland were sought using strontium isotope analysis. At least nine, and probably thirteen, of these individuals can be distinguished as migrants to Iceland from other places. In addition, there are clear differences to be seen in the diets of the local Icelandic peoples, ranging from largely terrestrial to largely marine consumption.


Author(s):  
Jennifer Hubbard

A relatively small, contentious, and long-forgotten meeting, the 1947 Symposium on Fish Populations, had enormous and decades-long repercussions for global fisheries policies. Convened in Toronto by Archibald Gowanlock Huntsman, former director of the Atlantic Biological Station, it drew together leading North American fisheries biologists and professional fishermen. By exposing the lack of agreement on, or understanding of, the nature of overfishing, this meeting made it difficult for later scientists to challenge pro-industry fisheries policies. The published proceedings, in-demand by a tight network of fisheries scientists across North America and the North Atlantic, guaranteed this meeting’s disproportionate and unfortunate impact.


2020 ◽  
Vol 33 (16) ◽  
pp. 7101-7123 ◽  
Author(s):  
Binhe Luo ◽  
Dehai Luo ◽  
Aiguo Dai ◽  
I. Simmonds ◽  
Lixin Wu

AbstractWinter surface air temperature (SAT) over North America exhibits pronounced variability on subseasonal, interannual, decadal, and interdecadal time scales. Here, reanalysis data from 1950–2017 are analyzed to investigate the atmospheric and surface ocean conditions associated with its subseasonal to interannual variability. Detrended daily SAT data reveal a known warm west/cold east (WWCE) dipole over midlatitude North America and a cold north/warm south (CNWS) dipole over eastern North America. It is found that while the North Pacific blocking (PB) is important for the WWCE and CNWS dipoles, they also depend on the phase of the North Atlantic Oscillation (NAO). When a negative-phase NAO (NAO−) coincides with PB, the WWCE dipole is enhanced (compared with the PB alone case) and it also leads to a warm north/cold south dipole anomaly in eastern North America; but when PB occurs with a positive-phase NAO (NAO+), the WWCE dipole weakens and the CNWS dipole is enhanced. The PB events concurrent with the NAO− (NAO+) and SAT WWCE (CNWS) dipole are favored by the Pacific El Niño–like (La Niña–like) sea surface temperature mode and the positive (negative) North Pacific mode. The PB-NAO+ has a larger component projecting onto the SAT WWCE dipole during the La Niña winter than during the El Niño winter because a more zonal wave train is formed. Strong North American SAT WWCE dipoles and enhanced projections of PB-NAO+ events onto the SAT WWCE dipole component are also readily seen for the positive North Pacific mode. The North Pacific mode seems to play a bigger role in the North American SAT variability than ENSO.


2021 ◽  
Author(s):  
Ramon Fuentes-Franco ◽  
Torben Koenigk ◽  
David Docquier ◽  
Federico Graef ◽  
Klaus Wyser

Abstract The influence of Rossby wave sources (RWS) emitted on the Northeastern Pacific Ocean in the Northern Hemisphere during summer is analysed in the ERA5 reanalysis and new large ensemble performed with the EC-Earth3 model. Using extreme years composites of precipitation, surface temperature, geopotential height, we found a causal influence of the Rossby waves generated over the Northeastern Pacific Ocean, on a global climate response. Both the reanalysis ERA5 and the EC-Earth3 model show that RWS triggers wave-like patterns arising from the upper troposphere Northeastern Pacific region. We show that an increased Rossby wave sources intensity is related with negative temperature anomalies over western North America, and positive temperature anomalies over eastern North America concurrently increased precipitation over Northern Europe during summer and sea-ice concentration decrease in the Arctic. We also show that the North Atlantic plays a very important role hindering or permitting that Rossby waves generated in the Pacific reach the Atlantic and modulate the atmospheric conditions over Europe. Such conditions were found in ERA5 and SMHI-LENS during colder and icier conditions over the North Atlantic.


1988 ◽  
Vol 120 (S144) ◽  
pp. 55-92 ◽  
Author(s):  
J.A. Downes

AbstractThe paper discusses the nature and origins of the present-day insect faunas of Greenland, Iceland, and the Faeroes in relation to those of North America and Europe. The markedly warm-adapted faunas of the Early Tertiary were modified or eliminated as the climate cooled from the Oligocene onward to the Pleistocene glaciations. The Wisconsinan glaciation peaked about 20 000 years ago, and then gave way rapidly to the arctic and cool temperate climates of the present, and the North Atlantic islands thus became habitable again but separated by wide expanses of northern seas. At most only a few strongly arctic-adapted species could have persisted through the Pleistocene and no land bridges from the continents have existed since the Early Miocene, 20 million years ago.Southern Greenland, Iceland, and the Faeroes have been colonized across sea passages from the adjacent continents, mainly by air but partly by sea, during the postglacial period (ca. 10 000 years). The faunas are all young, with no endemic species among about 2000 in all; the faunas are not arctic but distinctly subarctic, mainly of the High and Low Boreal life zones, and derived from these life zones of North America or Europe. The naturally established faunas are small or very small, less than 14% of the corresponding continental faunas, and are obviously disharmonic, with some groups absent across the North Atlantic, e.g. Culicidae, Tabanidae, Tachinidae, Papilionoidea, aculeate Hymenoptera (except Bombus sp.). This indicates a severe "sweepstakes" route. The lack of Tachinidae is noteworthy because their hosts are plentiful, and indicates dispersal by air, with adult Tachinidae, unlike adult Lepidoptera, unable to make the journey; dispersal by a land bridge would offer parasites and hosts an equal opportunity. Aerial transport is indicated also by the high proportion of migrant species (of Lepidoptera) in the island faunas, and the arrival in Surtsey (a new volcanic island) of almost 25% of the Icelandic fauna in 12 years. The Surtsey observations suggest that the Icelandic fauna is preadapted to aerial dispersal, by selection during its journey from Europe.The fauna of southern Greenland is derived partly from boreal America and partly from boreal Europe. The North American moiety becomes vestigial in Iceland and the Faeroes and does not reach Europe. Iceland and the Faeroes have been populated from northwestern Europe, especially Britain and Scandinavia. A few species extend to southern Greenland and thence, or even directly, reach North America, and have thus completed a post-glacial traverse of the North Atlantic.The fauna of North Greenland differs fundamentally from all the above. It is a high arctic fauna, nearly identical with the high arctic fauna in Canada, and thus complete, not disharmonie, though very small by virtue of its high arctic nature. It has encountered no "sweepstakes" dispersal. North Greenland is separated from High Arctic Canada only by a narrow channel which permits winter dispersal by wind across unbroken sea ice. Biologically, North Greenland is part of the North American High Arctic, and although certain species (e.g. mosquitoes and butterflies) may extend somewhat into southern Greenland, it has not contributed to the basic faunas of the North Atlantic islands.Among other problems, the extreme variability in wing pattern of many Lepidoptera in Iceland, the Faeroes, and Shetland is also commented on.


1988 ◽  
Vol 120 (S144) ◽  
pp. 39-53 ◽  
Author(s):  
Gerald R. Noonan

AbstractThe supercontinent of Pangaea, which once included most lands, fragmented during the Mesozoic. By the Late Cretaceous there were two northern land masses that were strikingly different from those of present day: Asiamerica consisting of present western North America and Asia; and Euramerica comprising Europe and eastern North America. Mild climates facilitated the spread of terrestrial organisms within each of these land masses, but epicontinental seas hindered movements between Europe and Asia and between eastern and western North America.The insects of Euramerica presumably once formed a fauna extending from eastern North America to Europe that differed from the fauna of Asiamerica. The opening of the North Atlantic separated insects in Europe from those in eastern North America. This produced vicarious patterns, with some insects of eastern North America now being more closely related phylogenetically to those of Europe than to those of western North America. Most groups of insects have not been examined for such trans-Atlantic vicariances, but studies reviewed in this paper suggest such relationships for some groups of Collembola, Hemiptera, Homoptera, Coleoptera, Diptera, and Hymenoptera.The last suitable land connections between Europe and eastern North America were severed approximately 20–35 million years ago. The insects separated by this severance evolved at different rates. Some groups split in this way have apparently undergone little evolution and have the same species on both sides of the North Atlantic, but other vicarious groups have differentiated into taxa that are now distinct at specific and supra-specific levels.The opening of the North Atlantic probably split both tropical- and temperate-adapted insects in Euramerica. However, without fossil data it is difficult to identify the biogeographical patterns resulting from such splitting of the tropical-adapted groups. Most presently recognized European and eastern North American vicarious patterns of insects were probably caused by division of Euramerica rather than dispersal across Beringia.


Sign in / Sign up

Export Citation Format

Share Document