Field Development Optimization in a Giant Oil Field in Azerbaijan and a Mature Oil Field in the North Sea

Author(s):  
Michael Litvak ◽  
Brian Gane ◽  
Lesley McMurray ◽  
Roger Skinner
2021 ◽  
Vol 9 (3) ◽  
Author(s):  
Marcio Soares Pinheiro ◽  
Paulo Roberto Duailibe Monteiro

Brazil began to explore its seas in the 60’s of the XX Century looking for petroleum. This journey began in the Northeast and the first oil field produced offshore was the Guaricema Field, in the State of Sergipe. During the 70’s, Petrobrás found oil in the Campos Basin, between the States of Espírito Santo and Rio de Janeiro, that became the most important oil province in Brazil until the discovery of the Pre-Salt province, in the Santos Basin. As these fields are producing for a long time, many of them are already completely depleted or their production is in way of to be not commercial anymore, and their facilities need to be decommissioned. This review of decommissioning practices of fixed offshore platforms carried out worldwide has focus on the removal of topside with special vessels designed for this purpose or with conventional methods (crane vessels + barge). It will show the benefits of using specialised heavy lift vessels to remove the topsides and move it to shore for dismantling / recycling / reuse / disposal. The cases for study were the successful decommissioning projects in the North Sea: Brent B/D, Valhall QP, Viking, Curlew, Eider A, Golden Eye and Leman, Iwaki-Oki, Halfweg Q1, Yme and Ninian North.


Author(s):  
Beatriz Alonso Castro ◽  
Roland Daly ◽  
Francisco Javier Becerro ◽  
Petter Vabø

Abstract The North sea Yme oil field was discovered in 1987, production started in 1996 and ceased after 6 years when it was considered no longer profitable to operate. In 2007 a new development was approved, being Yme the first field re-opened in the Norwegian Continental Shelf. The concept selected was a MOPUStor: comprising a jack-up unit grouted to a subsea storage tank. Due to compromised structural integrity and lack of regulatory compliance that came to light shortly after installation, the platform was required to be removed [1]. The remaining riser caisson and the future 1050 t wellhead module required a support to allow the re-use of the facilities and tap the remaining oil reserves. The innovative tubular frame support was designed as a braced unit, secured to the existing MOPUstor leg receptacles and holding a grouted clamp larger than typical offshore clamps for which design guidance in ISO is available. The existing facilities had to be modified to receive the new structure and to guide it in place within the small clearances available. The aim of this paper is to describe the solutions developed to prepare and verify the substructure for installation; to predict the dynamic behavior of a subsea heavy lift operation with small clearances around existing assets (down to 150 mm); and to place large volume high strength grouted connections, exceeding the height and thickness values from any project ever done before. In order to avoid early age degradation of the grout, a 1 mm maximum relative movement requirement was the operation design philosophy. A reliable system to stabilize the caisson, which displacements were up to 150 mm, was developed to meet the criteria during grouting and curing. In the stabilizer system design, as well as the plan for contingencies with divers to restart grouting in the event of a breakdown, the lessons learned from latest wind turbine industry practices and from the first attempt to re-develop the field using grouted connections were incorporated. Currently the substructure is secured to provide the long term integrity of the structure the next 20 years of future production in the North Sea environment.


2011 ◽  
Vol 51 (1) ◽  
pp. 589
Author(s):  
Kristian Aas ◽  
Lars Bjørheim

Gjøa was the largest field development project in Norway in 2010. Gjøa was proven in 1989 and are now being developed together with nearby Vega satellites. The combined reserves are estiThe recent Gjøa field development in the North Sea has many features that are relevant for the oil and gas developments north of Western Australia. While the field location is not very similar to the north of Western Australia, the field development solution is very relevant. Several subsea clusters are tied back to a semi-submersible platform with export of gas and condensate via pipelines to shore. Other aspects to the project that are relevant to Western Australia are split location engineering between Norway and India, fabrication of the hull in Korea and subsequent heavy lift transport to the assembly yard, pre-installation of the mooring system, and tow to field with ocean going tug boats. The semi concept, which was used for the Gjøa development, is a mature technology with few technical challenges on a conceptual level. On the other hand the building of an oil and gas platform for A$2 billion has many challenges, both economical and technical, that have to be solved to have a successful project for both the client and the contractor.


1973 ◽  
Vol 13 (1) ◽  
pp. 3
Author(s):  
P. E Kent

The paper gives the case histories of discovery in three major oil field areas-Iran, northern Alaska and the North Sea. These areas differ in their regional features and in the consequent requirements for geological and geophysical investigation and delineation. In Iran the earlier discoveries were based entirely on surface geology; geophysics became important with the need for deep survey. In northern Alaska structures mapped at surface gave only minor shows. Seismic surveys following geological deductions on reservoir development led to discovery of the giant Prudhoe Bay field near the Arctic coast. In the North Sea, in the much more complex extension of Permian-Mesozoic basins already well known on land, location of structures has been entirely by seismic survey.There is no close relation between the new Global Tectonics and the location of major oil field belts. The factors controlling the latter are multiple and complex. Resolution of the relative importance of vertical (epeirogenic) displacement as against the effect of lateral plate movement is nevertheless critical, particularly in Alaska.There is at present a large unresolved discrepancy between the times at which some continental margins developed (North Atlantic, East and West Indian Ocean) and with the physical evidence of sea floor spreading. In the three areas quoted, breakdown of the continental margins by vertical movements started in the Permian (—280 million years), but spreading is dated as beginning only in the late Cretaceous (—70 million years). It is the earlier movements, unexplained by current global theories, which have most relevance for petroleum exploration.


2020 ◽  
Vol 52 (1) ◽  
pp. 691-704 ◽  
Author(s):  
E. E. Taylor ◽  
N. J. Webb ◽  
C. J. Stevenson ◽  
J. R. Henderson ◽  
A. Kovac ◽  
...  

AbstractThe Buzzard Field remains the largest UK Continental Shelf oil discovery in the last 25 years. The field is located in the Outer Moray Firth of the North Sea and comprises stacked Upper Jurassic turbidite reservoirs of Late Kimmeridgian–Mid Volgian age, encased within Kimmeridge Clay Formation mudstones. The stratigraphic trap is produced by pinchout of the reservoir layers to the north, west and south. Production commenced in January 2007 and the field has subsequently produced 52% over the estimated reserves at commencement of development, surpassing initial performance expectations. Phase I drilling was completed in 2014 with 38 wells drilled from 36 platform slots. Platform drilling recommenced in 2018, followed in 2019 by Phase II drilling from a new northern manifold location.The evolution of the depositional model has been a key aspect of field development. Integration of production surveillance and dynamic data identified shortcomings in the appraisal depositional model. A sedimentological study based on core reinterpretation created an updated depositional model, which was then integrated with seismic and production data. The new depositional model is better able to explain non-uniform water sweep in the field resulting from a more complex sandbody architecture of stacked channels prograding over underlying lobes.


1985 ◽  
Vol 1 (S1) ◽  
pp. 357-359
Author(s):  
Helge Bryne ◽  
Eilif Dahl

Since oil was found under the North Sea in the mid 1960's, oil production now plays an important part in Norwegian economy. A major oil field isEkofisk, between Norway and Britain (Figure 1). TheAlexander Kielland, one of the rigs atEkofisk, was a mobile platform of the pentagon type, floating on 5 columns, 150 nautical miles of f the Norwegian coast. It was developed and built as a drilling rig, but was used as an accommodation platform since delivery in July 1976. OnMarch27,1980, theAlexander Kiellandrig lay at anchor on theEkofisk field, close to the production platform EDDA.


1991 ◽  
Vol 14 (1) ◽  
pp. 451-458 ◽  
Author(s):  
A. P. Hillier ◽  
B. P. J. Williams

AbstractDiscovered in 1966 and starting production in 1968, Leman was the second gas field to come into production in the UK sector of the North Sea. It is classified as a giant field with an estimated ultimate recovery of 11 500 BCF of gas in the aeolian dune sands of the Rotliegend Group. The field extends over five blocks and is being developed by two groups with Shell and Amoco being the operators. Despite being such an old field development drilling is still ongoing in the field with the less permeable northwest area currently being developed.


Sign in / Sign up

Export Citation Format

Share Document