scholarly journals Protein Kinase A Regulatory Subunit Type IIβ Directly Interacts with and Suppresses CREB Transcriptional Activity in Activated T Cells

2003 ◽  
Vol 171 (7) ◽  
pp. 3636-3644 ◽  
Author(s):  
Michael R. Elliott ◽  
Mate Tolnay ◽  
George C. Tsokos ◽  
Gary M. Kammer
2002 ◽  
Vol 62 (6) ◽  
pp. 1471-1481 ◽  
Author(s):  
Monika Vig ◽  
Anna George ◽  
Ranjan Sen ◽  
Jeannine Durdik ◽  
Satyajit Rath ◽  
...  

2006 ◽  
Vol 203 (7) ◽  
pp. 1733-1744 ◽  
Author(s):  
Ajay Nirula ◽  
Mary Ho ◽  
Hyewon Phee ◽  
Jeroen Roose ◽  
Arthur Weiss

CD28 plays a critical role in T cell immune responses. Although the kinase Akt has been shown to act downstream of CD28 in T helper (Th)1 cytokine induction, it does not induce Th2 cytokines such as interleukin 4 (IL-4). We recently reported that phosphoinositide-dependent kinase 1 (PDK1) partially corrects the defect in IL-4 production present in CD28-deficient T cells, suggesting that PDK1 regulates IL-4 independently of Akt. We now describe a signaling pathway in which PDK1 targets IL-4 in the murine Th2 cell line D10. PDK1-mediated activation of this pathway is dependent on protein kinase A (PKA) and the nuclear factor of activated T cells (NFAT) P1 transcriptional element in the IL-4 promoter. PDK1 localizes to the immune synapse in a phosphatidylinositol 3-kinase–dependent manner, partially colocalizes with PKA at the synapse, and physically interacts with PKA. In RNA interference knockdown experiments, PDK1 is necessary for phosphorylation of PKA in T cells, as well as for activation of the IL-4 NFAT P1 element by the T cell receptor (TCR) and CD28. Phosphorylation of the critical PKA threonine residue is stimulated by engagement of TCR/CD28 via a PDK1-dependent mechanism. These findings together define a pathway linking the kinases PDK1 and PKA in the induction of the Th2 cytokine IL-4.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1361
Author(s):  
Maira Zorzan ◽  
Claudia Del Vecchio ◽  
Stefania Vogiatzis ◽  
Elisa Saccon ◽  
Cristina Parolin ◽  
...  

Glioblastoma is the most malignant and most common form of brain tumor, still today associated with a poor 14-months median survival from diagnosis. Protein kinase A, particularly its regulatory subunit R2Alpha, presents a typical intracellular distribution in glioblastoma cells compared to the healthy brain parenchyma and this peculiarity might be exploited in a therapeutic setting. In the present study, a third-generation lentiviral system for delivery of shRNA targeting the regulatory subunit R2Alpha of protein kinase A was developed. Generated lentiviral vectors are able to induce an efficient and stable downregulation of R2Alpha in different cellular models, including non-stem and stem-like glioblastoma cells. In addition, our data suggest a potential correlation between silencing of the regulatory subunit of protein kinase A and reduced viability of tumor cells, apparently due to a reduction in replication rate. Thus, our findings support the role of protein kinase A as a promising target for novel anti-glioma therapies.


2021 ◽  
pp. 107732
Author(s):  
Nicolás González Bardeci ◽  
Enzo Tofolón ◽  
Felipe Trajtenberg ◽  
Julio Caramelo ◽  
Nicole Larrieux ◽  
...  

2003 ◽  
Vol 278 (25) ◽  
pp. 22586-22595 ◽  
Author(s):  
Alpana Ray ◽  
Papiya Ray ◽  
Nicole Guthrie ◽  
Arvind Shakya ◽  
Deepak Kumar ◽  
...  

2004 ◽  
Vol 18 (9) ◽  
pp. 2302-2311 ◽  
Author(s):  
Michael A. Nolan ◽  
Maria A. Sikorski ◽  
G. Stanley McKnight

Abstract Mice lacking the RIIβ regulatory subunit of protein kinase A exhibit a 50% reduction in white adipose tissue stores compared with wild-type littermates and are resistant to diet-induced obesity. RIIβ−/− mice also have an increase in resting oxygen consumption along with a 4-fold increase in the brown adipose-specific mitochondrial uncoupling protein 1 (UCP1). In this study, we examined the basis for UCP1 induction and tested the hypothesis that the induced levels of UCP1 in RIIβ null mice are essential for the lean phenotype. The induction of UCP1 occurred at the protein but not the mRNA level and correlated with an increase in mitochondria in brown adipose tissue. Mice lacking both RIIβ and UCP1 (RIIβ−/−/Ucp1−/−) were created, and the key parameters of metabolism and body composition were studied. We discovered that RIIβ−/− mice exhibit nocturnal hyperactivity in addition to the increased oxygen consumption at rest. Disruption of UCP1 in RIIβ−/− mice reduced basal oxygen consumption but did not prevent the nocturnal hyperactivity. The double knockout animals also retained the lean phenotype of the RIIβ null mice, demonstrating that induction of UCP1 and increased resting oxygen consumption is not the cause of leanness in the RIIβ mutant mice.


2021 ◽  
Author(s):  
Rebecca LaCroix ◽  
Benjamin Lin ◽  
Andre Levchenko

SummaryKinase activity in signaling networks frequently depends on regulatory subunits that can both inhibit activity by interacting with the catalytic subunits and target the kinase to distinct molecular partners and subcellular compartments. Here, using a new synthetic molecular interaction system, we show that translocation of a regulatory subunit of the protein kinase A (PKA-R) to the plasma membrane has a paradoxical effect on the membrane kinase activity. It can both enhance it at lower translocation levels, even in the absence of signaling inputs, and inhibit it at higher translocation levels, suggesting its role as a linker that can both couple and decouple signaling processes in a concentration-dependent manner. We further demonstrate that superposition of gradients of PKA-R abundance across single cells can control the directionality of cell migration, reversing it at high enough input levels. Thus complex in vivo patterns of PKA-R localization can drive complex phenotypes, including cell migration.


Sign in / Sign up

Export Citation Format

Share Document