scholarly journals HIV-1 Epitope-Specific CD8+T Cell Responses Strongly Associated with Delayed Disease Progression Cross-Recognize Epitope Variants Efficiently

2006 ◽  
Vol 176 (10) ◽  
pp. 6130-6146 ◽  
Author(s):  
Emma L. Turnbull ◽  
A. Ross Lopes ◽  
Nicola A. Jones ◽  
David Cornforth ◽  
Phillipa Newton ◽  
...  
PLoS ONE ◽  
2011 ◽  
Vol 6 (7) ◽  
pp. e21135 ◽  
Author(s):  
Elizabeth R. Sharp ◽  
Christian B. Willberg ◽  
Peter J. Kuebler ◽  
Jacob Abadi ◽  
Glenn J. Fennelly ◽  
...  

2006 ◽  
Vol 119 (19) ◽  
pp. 1609-1615 ◽  
Author(s):  
Yang JIAO ◽  
Tai-sheng LI ◽  
Jing XIE ◽  
Yang HAN ◽  
Zhi-feng QIU ◽  
...  

2019 ◽  
Vol 17 (5) ◽  
pp. 350-359
Author(s):  
Liliana Acevedo-Saenz ◽  
Federico Perdomo-Celis ◽  
Carlos J. Montoya ◽  
Paula A. Velilla

Background: : The diversity of the HIV proteome influences the cellular response and development of an effective vaccine, particularly due to the generation of viral variants with mutations located within CD8+ T-cell epitopes. These mutations can affect the recognition of the epitopes, that may result in the selection of HIV variants with mutated epitopes (autologous epitopes) and different CD8+ T-cell functional profiles. Objective:: To determine the phenotype and functionality of CD8+ T-cell from HIV-infected Colombian patients in response to autologous and consensus peptides derived from HIV-1 clade B protease and reverse transcriptase (RT). Methods:: By flow cytometry, we compared the ex vivo CD8+ T-cell responses from HIV-infected patients to autologous and consensus peptides derived from HIV-1 clade B protease and RT, restricted by HLA-B*35, HLA-B*44 and HLA-B*51 alleles. Results:: Although autologous peptides restricted by HLA-B*35 and HLA-B*44 did not show any differences compared with consensus peptides, we observed the induction of a higher polyfunctional profile of CD8+ T-cells by autologous peptides restricted by HLA-B*51, particularly by the production of interferon-γ and macrophage inflammatory protein-1β. The response by different memory CD8+ T-cell populations was comparable between autologous vs. consensus peptides. In addition, the magnitude of the polyfunctional response induced by the HLA-B*51-restricted QRPLVTIRI autologous epitope correlated with low viremia. Conclusion:: Autologous peptides should be considered for the evaluation of HIV-specific CD8+ Tcell responses and to reveal some relevant epitopes that could be useful for therapeutic strategies aiming to promote polyfunctional CD8+ T-cell responses in a specific population of HIV-infected patients.


Vaccine ◽  
2010 ◽  
Vol 28 (37) ◽  
pp. 6052-6057 ◽  
Author(s):  
Coral-Ann M. Almeida ◽  
Steven G. Roberts ◽  
Rebecca Laird ◽  
Elizabeth McKinnon ◽  
Imran Ahmad ◽  
...  

2012 ◽  
Vol 86 (18) ◽  
pp. 9802-9816 ◽  
Author(s):  
Melissa M. Norström ◽  
Marcus Buggert ◽  
Johanna Tauriainen ◽  
Wendy Hartogensis ◽  
Mattia C. Prosperi ◽  
...  

HLA-B*5701 is the host factor most strongly associated with slow HIV-1 disease progression, although rates can vary within this group. Underlying mechanisms are not fully understood but likely involve both immunological and virological dynamics. The present study investigated HIV-1in vivoevolution and epitope-specific CD8+T cell responses in six HLA-B*5701 patients who had not received antiretroviral treatment, monitored from early infection for up to 7 years. The subjects were classified as high-risk progressors (HRPs) or low-risk progressors (LRPs) based on baseline CD4+T cell counts. Dynamics of HIV-1 Gag p24 evolution and multifunctional CD8+T cell responses were evaluated by high-resolution phylogenetic analysis and polychromatic flow cytometry, respectively. In all subjects, substitutions occurred more frequently in flanking regions than in HLA-B*5701-restricted epitopes. In LRPs, p24 sequence diversity was significantly lower; sequences exhibited a higher degree of homoplasy and more constrained mutational patterns than HRPs. The HIV-1 intrahost evolutionary rate was also lower in LRPs and followed a strict molecular clock, suggesting neutral genetic drift rather than positive selection. Additionally, polyfunctional CD8+T cell responses, particularly to TW10 and QW9 epitopes, were more robust in LRPs, who also showed significantly higher interleukin-2 (IL-2) production in early infection. Overall, the findings indicate that HLA-B*5701 patients with higher CD4 counts at baseline have a lower risk of HIV-1 disease progression because of the interplay between specific HLA-linked immune responses and the rate and mode of viral evolution. The study highlights the power of a multidisciplinary approach, integrating high-resolution evolutionary and immunological data, to understand mechanisms underlying HIV-1 pathogenesis.


2010 ◽  
Vol 84 (12) ◽  
pp. 5898-5908 ◽  
Author(s):  
Maximillian Rosario ◽  
Richard Hopkins ◽  
John Fulkerson ◽  
Nicola Borthwick ◽  
Máire F. Quigley ◽  
...  

ABSTRACT Mycobacterium bovis bacillus Calmette-Guérin (BCG), which elicits a degree of protective immunity against tuberculosis, is the most widely used vaccine in the world. Due to its persistence and immunogenicity, BCG has been proposed as a vector for vaccines against other infections, including HIV-1. BCG has a very good safety record, although it can cause disseminated disease in immunocompromised individuals. Here, we constructed a recombinant BCG vector expressing HIV-1 clade A-derived immunogen HIVA using the recently described safer and more immunogenic BCG strain AERAS-401 as the parental mycobacterium. Using routine ex vivo T-cell assays, BCG.HIVA401 as a stand-alone vaccine induced undetectable and weak CD8 T-cell responses in BALB/c mice and rhesus macaques, respectively. However, when BCG.HIVA401 was used as a priming component in heterologous vaccination regimens together with recombinant modified vaccinia virus Ankara-vectored MVA.HIVA and ovine atadenovirus-vectored OAdV.HIVA vaccines, robust HIV-1-specific T-cell responses were elicited. These high-frequency T-cell responses were broadly directed and capable of proliferation in response to recall antigen. Furthermore, multiple antigen-specific T-cell clonotypes were efficiently recruited into the memory pool. These desirable features are thought to be associated with good control of HIV-1 infection. In addition, strong and persistent T-cell responses specific for the BCG-derived purified protein derivative (PPD) antigen were induced. This work is the first demonstration of immunogenicity for two novel vaccine vectors and the corresponding candidate HIV-1 vaccines BCG.HIVA401 and OAdV.HIVA in nonhuman primates. These results strongly support their further exploration.


PLoS ONE ◽  
2008 ◽  
Vol 3 (10) ◽  
pp. e3577 ◽  
Author(s):  
J. William Critchfield ◽  
Delandy H. Young ◽  
Timothy L. Hayes ◽  
Jerome V. Braun ◽  
Juan C. Garcia ◽  
...  

2005 ◽  
Vol 26 (3) ◽  
pp. 166-171 ◽  
Author(s):  
Mathias Lichterfeld ◽  
Xu G. Yu ◽  
Sylvie Le Gall ◽  
Marcus Altfeld

Viruses ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 424 ◽  
Author(s):  
Beatriz Perdiguero ◽  
Suresh C. Raman ◽  
Cristina Sánchez-Corzo ◽  
Carlos Oscar S. Sorzano ◽  
José Ramón Valverde ◽  
...  

An effective vaccine against Human Immunodeficiency Virus (HIV) still remains the best solution to provide a sustainable control and/or eradication of the virus. We have previously generated the HIV-1 vaccine modified vaccinia virus Ankara (MVA)-B, which exhibited good immunogenicity profile in phase I prophylactic and therapeutic clinical trials, but was unable to prevent viral rebound after antiretroviral (ART) removal. To potentiate the immunogenicity of MVA-B, here we described the design and immune responses elicited in mice by a new T cell multi-epitopic B (TMEP-B) immunogen, vectored by DNA, when administered in homologous or heterologous prime/boost regimens in combination with MVA-B. The TMEP-B protein contained conserved regions from Gag, Pol, and Nef proteins including multiple CD4 and CD8 T cell epitopes functionally associated with HIV control. Heterologous DNA-TMEP/MVA-B regimen induced higher HIV-1-specific CD8 T cell responses with broader epitope recognition and higher polyfunctional profile than the homologous DNA-TMEP/DNA-TMEP or the heterologous DNA-GPN/MVA-B combinations. Moreover, higher HIV-1-specific CD4 and Tfh immune responses were also detected using this regimen. After MVA-B boost, the magnitude of the anti-VACV CD8 T cell response was significantly compromised in DNA-TMEP-primed animals. Our results revealed the immunological potential of DNA-TMEP prime/MVA-B boost regimen and supported the application of these combined vectors in HIV-1 prevention and/or therapy.


Sign in / Sign up

Export Citation Format

Share Document