Polyfunctional CD8+ T-Cell Response to Autologous Peptides from Protease and Reverse Transcriptase of HIV-1 Clade B

2019 ◽  
Vol 17 (5) ◽  
pp. 350-359
Author(s):  
Liliana Acevedo-Saenz ◽  
Federico Perdomo-Celis ◽  
Carlos J. Montoya ◽  
Paula A. Velilla

Background: : The diversity of the HIV proteome influences the cellular response and development of an effective vaccine, particularly due to the generation of viral variants with mutations located within CD8+ T-cell epitopes. These mutations can affect the recognition of the epitopes, that may result in the selection of HIV variants with mutated epitopes (autologous epitopes) and different CD8+ T-cell functional profiles. Objective:: To determine the phenotype and functionality of CD8+ T-cell from HIV-infected Colombian patients in response to autologous and consensus peptides derived from HIV-1 clade B protease and reverse transcriptase (RT). Methods:: By flow cytometry, we compared the ex vivo CD8+ T-cell responses from HIV-infected patients to autologous and consensus peptides derived from HIV-1 clade B protease and RT, restricted by HLA-B*35, HLA-B*44 and HLA-B*51 alleles. Results:: Although autologous peptides restricted by HLA-B*35 and HLA-B*44 did not show any differences compared with consensus peptides, we observed the induction of a higher polyfunctional profile of CD8+ T-cells by autologous peptides restricted by HLA-B*51, particularly by the production of interferon-γ and macrophage inflammatory protein-1β. The response by different memory CD8+ T-cell populations was comparable between autologous vs. consensus peptides. In addition, the magnitude of the polyfunctional response induced by the HLA-B*51-restricted QRPLVTIRI autologous epitope correlated with low viremia. Conclusion:: Autologous peptides should be considered for the evaluation of HIV-specific CD8+ Tcell responses and to reveal some relevant epitopes that could be useful for therapeutic strategies aiming to promote polyfunctional CD8+ T-cell responses in a specific population of HIV-infected patients.

Viruses ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 424 ◽  
Author(s):  
Beatriz Perdiguero ◽  
Suresh C. Raman ◽  
Cristina Sánchez-Corzo ◽  
Carlos Oscar S. Sorzano ◽  
José Ramón Valverde ◽  
...  

An effective vaccine against Human Immunodeficiency Virus (HIV) still remains the best solution to provide a sustainable control and/or eradication of the virus. We have previously generated the HIV-1 vaccine modified vaccinia virus Ankara (MVA)-B, which exhibited good immunogenicity profile in phase I prophylactic and therapeutic clinical trials, but was unable to prevent viral rebound after antiretroviral (ART) removal. To potentiate the immunogenicity of MVA-B, here we described the design and immune responses elicited in mice by a new T cell multi-epitopic B (TMEP-B) immunogen, vectored by DNA, when administered in homologous or heterologous prime/boost regimens in combination with MVA-B. The TMEP-B protein contained conserved regions from Gag, Pol, and Nef proteins including multiple CD4 and CD8 T cell epitopes functionally associated with HIV control. Heterologous DNA-TMEP/MVA-B regimen induced higher HIV-1-specific CD8 T cell responses with broader epitope recognition and higher polyfunctional profile than the homologous DNA-TMEP/DNA-TMEP or the heterologous DNA-GPN/MVA-B combinations. Moreover, higher HIV-1-specific CD4 and Tfh immune responses were also detected using this regimen. After MVA-B boost, the magnitude of the anti-VACV CD8 T cell response was significantly compromised in DNA-TMEP-primed animals. Our results revealed the immunological potential of DNA-TMEP prime/MVA-B boost regimen and supported the application of these combined vectors in HIV-1 prevention and/or therapy.


Vaccines ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 78 ◽  
Author(s):  
Athina Kilpeläinen ◽  
Narcís Saubi ◽  
Núria Guitart ◽  
Alex Olvera ◽  
Tomáš Hanke ◽  
...  

Despite the availability of anti-retroviral therapy, HIV-1 infection remains a massive burden on healthcare systems. Bacillus Calmette-Guérin (BCG), the only licensed vaccine against tuberculosis, confers protection against meningitis and miliary tuberculosis in infants. Recombinant BCG has been used as a vaccine vehicle to express both HIV-1 and Simian Immunodeficiemcy Virus (SIV) immunogens. In this study, we constructed an integrative E. coli-mycobacterial shuttle plasmid, p2auxo.HTI.int, expressing the HIVACAT T-cell immunogen (HTI). The plasmid was transformed into a lysine auxotrophic Mycobacterium bovis BCG strain (BCGΔLys) to generate the vaccine BCG.HTI2auxo.int. The DNA sequence coding for the HTI immunogen and HTI protein expression were confirmed, and working vaccine stocks were genetically and phenotypically characterized. We demonstrated that the vaccine was stable in vitro for 35 bacterial generations, and that when delivered in combination with chimpanzee adenovirus (ChAd)Ox1.HTI in adult BALB/c mice, it was well tolerated and induced HIV-1-specific T-cell responses. Specifically, priming with BCG.HTI2auxo.int doubled the magnitude of the T-cell response in comparison with ChAdOx1.HTI alone while maintaining its breadth. The use of integrative expression vectors and novel HIV-1 immunogens can aid in improving mycobacterial vaccine stability as well as specific immunogenicity. This vaccine candidate may be a useful tool in the development of an effective vaccine platform for priming protective responses against HIV-1/TB and other prevalent pediatric pathogens.


2003 ◽  
Vol 77 (13) ◽  
pp. 7330-7340 ◽  
Author(s):  
Marcus Altfeld ◽  
Marylyn M. Addo ◽  
Raj Shankarappa ◽  
Paul K. Lee ◽  
Todd M. Allen ◽  
...  

ABSTRACT The antigenic diversity of human immunodeficiency virus type 1 (HIV-1) represents a significant challenge for vaccine design as well as the comprehensive assessment of HIV-1-specific immune responses in infected persons. In this study we assessed the impact of antigen variability on the characterization of HIV-1-specific T-cell responses by using an HIV-1 database to determine the sequence variability at each position in all expressed HIV-1 proteins and a comprehensive data set of CD8 T-cell responses to a reference strain of HIV-1 in infected persons. Gamma interferon Elispot analysis of HIV-1 clade B-specific T-cell responses to 504 overlapping peptides spanning the entire expressed HIV-1 genome derived from 57 infected subjects demonstrated that the average amino acid variability within a peptide (entropy) was inversely correlated to the measured frequency at which the peptide was recognized (P = 6 × 10−7). Subsequent studies in six persons to assess T-cell responses against p24 Gag, Tat, and Vpr peptides based on autologous virus sequences demonstrated that 29% (12 of 42) of targeted peptides were only detected with peptides representing the autologous virus strain compared to the HIV-1 clade B consensus sequence. The use of autologous peptides also allowed the detection of significantly stronger HIV-1-specific T-cell responses in the more variable regulatory and accessory HIV-1 proteins Tat and Vpr (P = 0.007). Taken together, these data indicate that accurate assessment of T-cell responses directed against the more variable regulatory and accessory HIV-1 proteins requires reagents based on autologous virus sequences. They also demonstrate that CD8 T-cell responses to the variable HIV-1 proteins are more common than previously reported.


Vaccine ◽  
2010 ◽  
Vol 28 (37) ◽  
pp. 6052-6057 ◽  
Author(s):  
Coral-Ann M. Almeida ◽  
Steven G. Roberts ◽  
Rebecca Laird ◽  
Elizabeth McKinnon ◽  
Imran Ahmad ◽  
...  

2005 ◽  
Vol 79 (15) ◽  
pp. 9419-9429 ◽  
Author(s):  
Nicole E. Miller ◽  
Jennifer R. Bonczyk ◽  
Yumi Nakayama ◽  
M. Suresh

ABSTRACT Although it is well documented that CD8 T cells play a critical role in controlling chronic viral infections, the mechanisms underlying the regulation of CD8 T-cell responses are not well understood. Using the mouse model of an acute and chronic lymphocytic choriomeningitis virus (LCMV) infection, we have examined the relative importance of peripheral T cells and thymic emigrants in the elicitation and maintenance of CD8 T-cell responses. Virus-specific CD8 T-cell responses were compared between mice that were either sham thymectomized or thymectomized (Thx) at ∼6 weeks of age. In an acute LCMV infection, thymic deficiency did not affect either the primary expansion of CD8 T cells or the proliferative renewal and maintenance of virus-specific lymphoid and nonlymphoid memory CD8 T cells. Following a chronic LCMV infection, in Thx mice, although the initial expansion of CD8 T cells was normal, the contraction phase of the CD8 T-cell response was exaggerated, which led to a transient but striking CD8 T-cell deficit on day 30 postinfection. However, the virus-specific CD8 T-cell response in Thx mice rebounded quickly and was maintained at normal levels thereafter, which indicated that the peripheral T-cell repertoire is quite robust and capable of sustaining an effective CD8 T-cell response in the absence of thymic output during a chronic LCMV infection. Taken together, these findings should further our understanding of the regulation of CD8 T-cell homeostasis in acute and chronic viral infections and might have implications in the development of immunotherapy.


Pathogens ◽  
2018 ◽  
Vol 7 (2) ◽  
pp. 55 ◽  
Author(s):  
Zhijuan Qiu ◽  
Camille Khairallah ◽  
Brian Sheridan

Listeria monocytogenes (Lm) infection induces robust CD8 T cell responses, which play a critical role in resolving Lm during primary infection and provide protective immunity to re-infections. Comprehensive studies have been conducted to delineate the CD8 T cell response after Lm infection. In this review, the generation of the CD8 T cell response to Lm infection will be discussed. The role of dendritic cell subsets in acquiring and presenting Lm antigens to CD8 T cells and the events that occur during T cell priming and activation will be addressed. CD8 T cell expansion, differentiation and contraction as well as the signals that regulate these processes during Lm infection will be explored. Finally, the formation of memory CD8 T cell subsets in the circulation and in the intestine will be analyzed. Recently, the study of CD8 T cell responses to Lm infection has begun to shift focus from the intravenous infection model to a natural oral infection model as the humanized mouse and murinized Lm have become readily available. Recent findings in the generation of CD8 T cell responses to oral infection using murinized Lm will be explored throughout the review. Finally, CD8 T cell-mediated protective immunity against Lm infection and the use of Lm as a vaccine vector for cancer immunotherapy will be highlighted. Overall, this review will provide detailed knowledge on the biology of CD8 T cell responses after Lm infection that may shed light on improving rational vaccine design.


2010 ◽  
Vol 84 (6) ◽  
pp. 2881-2892 ◽  
Author(s):  
Michael L. Freeman ◽  
Kathleen G. Lanzer ◽  
Tres Cookenham ◽  
Bjoern Peters ◽  
John Sidney ◽  
...  

ABSTRACT Murine gammaherpesvirus 68 (γHV68) provides an important experimental model for understanding mechanisms of immune control of the latent human gammaherpesviruses. Antiviral CD8 T cells play a key role throughout three separate phases of the infection: clearance of lytic virus, control of the latency amplification stage, and prevention of reactivation of latently infected cells. Previous analyses have shown that T-cell responses to two well-characterized epitopes derived from ORF6 and ORF61 progress with distinct kinetics. ORF6487-specific cells predominate early in infection and then decline rapidly, whereas ORF61524-specific cells continue to expand through early latency, due to sustained epitope expression. However, the paucity of identified epitopes to this virus has limited our understanding of the overall complexities of CD8 T-cell immune control throughout infection. Here we screened 1,383 predicted H-2b-restricted peptides and identified 33 responses, of which 21 have not previously been reported. Kinetic analysis revealed a spectrum of T-cell responses based on the rapidity of their decline after the peak acute response that generally corresponded to the expression patterns of the two previously characterized epitopes. The slowly declining responses that were maintained during latency amplification proliferated more rapidly and underwent maturation of functional avidity over time. Furthermore, the kinetics of decline was accelerated following infection with a latency-null mutant virus. Overall, the data show that γHV68 infection elicits a highly heterogeneous CD8 T-cell response that segregates into two distinctive kinetic patterns controlled by differential epitope expression during the lytic and latency amplification stages of infection.


2010 ◽  
Vol 84 (12) ◽  
pp. 5898-5908 ◽  
Author(s):  
Maximillian Rosario ◽  
Richard Hopkins ◽  
John Fulkerson ◽  
Nicola Borthwick ◽  
Máire F. Quigley ◽  
...  

ABSTRACT Mycobacterium bovis bacillus Calmette-Guérin (BCG), which elicits a degree of protective immunity against tuberculosis, is the most widely used vaccine in the world. Due to its persistence and immunogenicity, BCG has been proposed as a vector for vaccines against other infections, including HIV-1. BCG has a very good safety record, although it can cause disseminated disease in immunocompromised individuals. Here, we constructed a recombinant BCG vector expressing HIV-1 clade A-derived immunogen HIVA using the recently described safer and more immunogenic BCG strain AERAS-401 as the parental mycobacterium. Using routine ex vivo T-cell assays, BCG.HIVA401 as a stand-alone vaccine induced undetectable and weak CD8 T-cell responses in BALB/c mice and rhesus macaques, respectively. However, when BCG.HIVA401 was used as a priming component in heterologous vaccination regimens together with recombinant modified vaccinia virus Ankara-vectored MVA.HIVA and ovine atadenovirus-vectored OAdV.HIVA vaccines, robust HIV-1-specific T-cell responses were elicited. These high-frequency T-cell responses were broadly directed and capable of proliferation in response to recall antigen. Furthermore, multiple antigen-specific T-cell clonotypes were efficiently recruited into the memory pool. These desirable features are thought to be associated with good control of HIV-1 infection. In addition, strong and persistent T-cell responses specific for the BCG-derived purified protein derivative (PPD) antigen were induced. This work is the first demonstration of immunogenicity for two novel vaccine vectors and the corresponding candidate HIV-1 vaccines BCG.HIVA401 and OAdV.HIVA in nonhuman primates. These results strongly support their further exploration.


PLoS ONE ◽  
2008 ◽  
Vol 3 (10) ◽  
pp. e3577 ◽  
Author(s):  
J. William Critchfield ◽  
Delandy H. Young ◽  
Timothy L. Hayes ◽  
Jerome V. Braun ◽  
Juan C. Garcia ◽  
...  

2005 ◽  
Vol 26 (3) ◽  
pp. 166-171 ◽  
Author(s):  
Mathias Lichterfeld ◽  
Xu G. Yu ◽  
Sylvie Le Gall ◽  
Marcus Altfeld

Sign in / Sign up

Export Citation Format

Share Document