scholarly journals Synthesis of Macrocyclic Hexaoxazole (6OTD) Dimers, Containing Guanidine and Amine Functionalized Side Chains, and an Evaluation of Their Telomeric G4 Stabilizing Properties

2010 ◽  
Vol 2010 ◽  
pp. 1-9 ◽  
Author(s):  
Keisuke Iida ◽  
Masayuki Tera ◽  
Takatsugu Hirokawa ◽  
Kazuo Shin-ya ◽  
Kazuo Nagasawa

Structure-activity relationship studies were carried out on macrocyclic hexaoxazole (6OTD) dimers, whose core structure stabilizes telomeric G-quadruplexes (G4). Two new 6OTD dimers having side chain amine and guanidine functional groups were synthesized and evaluated for their stabilizing ability against a telomeric G4 DNA sequence. The results show that the 6OTD dimers interact with the DNA to form 1:1 complexes and stabilize the antiparallel G4 structure of DNA in the presence of potassium cation. The guanidine functionalized dimer displays a potent stabilizing ability of the G4 structure, as determined by using a FRET melting assay (ΔTm=14 °C).

Biomolecules ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1131
Author(s):  
Toan Dao-Huy ◽  
Simone Latkolik ◽  
Julia Bräuer ◽  
Andreas Pfeil ◽  
Hermann Stuppner ◽  
...  

A series of 2-arylbenzofurans and 2-arylbenzothiophenes was synthesized carrying three different side chains in position five. The synthesized compounds were tested for NF-κB inhibition to establish a structure activity relationship. It was found that both, the side chain in position five and the substitution pattern of the aryl moiety in position two have a significant influence on the inhibitory activity.


2010 ◽  
Vol 5 (9) ◽  
pp. 1934578X1000500
Author(s):  
Iris Stappen ◽  
Joris Höfinghoff ◽  
Gerhard Buchbauer ◽  
Peter Wolschann

Structural modifications of natural (-)-( Z)-β-santalol have shown that the sandalwood odor impression is highly sensitive, even to small structural changes. Particularly, the substitution of the quaternary carbon is of great influence on the scent. Epi-compounds with side chains in the endo-position possess sandalwood odor in only a few derivatives, whereas modifications at this side chain, as well as modification at the bicyclic ring systems mostly lead to a complete loss of sandalwood fragrance.


2017 ◽  
Vol 134 ◽  
pp. 86-96 ◽  
Author(s):  
Anna Y. Belorusova ◽  
Andrea Martínez ◽  
Zoila Gándara ◽  
Generosa Gómez ◽  
Yagamare Fall ◽  
...  

Polymer ◽  
2000 ◽  
Vol 41 (2) ◽  
pp. 415-421 ◽  
Author(s):  
N Tirelli ◽  
A Altomare ◽  
R Solaro ◽  
F Ciardelli ◽  
S Follonier ◽  
...  

2017 ◽  
Vol 12 (12) ◽  
pp. 1934578X1701201
Author(s):  
Natalia K. Utkina ◽  
Natalia D. Pokhilo

The ABTS•+ radical cation scavenging activity of known (2-5, 9, 10) and new (6-8) 1’-hydroxyethylnaphthazarins and their products of esterification and etherification was evaluated and a structure-activity relationship was studied. It was shown, that the structure of side chains does not affect the radical scavenging activity of 1’-hydroxyethylnaphthazarins and their derivatives. The presence of methoxyl groups on the naphthazarin core slightly enhanced the antioxidant activity of compounds compared with compounds without methoxyl groups. The presence of the additional hydroxyl group on the naphthazarin moiety of isonorlomazarin (5) and its derivative (6) is essential for the activity.


2019 ◽  
Vol 60 (15) ◽  
pp. 1037-1042
Author(s):  
Masaki Ohtawa ◽  
Keisuke Yano ◽  
Atsuyoshi Miyao ◽  
Tohru Hiura ◽  
Kouhei Sugiyama ◽  
...  

2020 ◽  
Vol 11 (2) ◽  
pp. 508-516 ◽  
Author(s):  
Kuluni Perera ◽  
Zhengran Yi ◽  
Liyan You ◽  
Zhifan Ke ◽  
Jianguo Mei

This work illustrates an effective side-chain modification approach using amide functional groups to induce aqueous electroactivity to ProDOT-based electrochromic polymers.


Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 479 ◽  
Author(s):  
Der-Yen Lee ◽  
Yu-Chi Hou ◽  
Jai-Sing Yang ◽  
Hui-Yi Lin ◽  
Tsu-Yuan Chang ◽  
...  

Compound 1 is a curcumin di-O-2,2-bis(hydroxymethyl)propionate that shows significant in vitro and in vivo inhibitory activity against MDA-MB-231 cells with eight to ten-fold higher potency than curcumin. Here, we modified the α-position (C-4 position) of the central 1,3-diketone moiety of 1 with polar or nonpolar functional groups to afford a series of 4,4-disubstituted curcuminoid 2,2-bis(hydroxymethyl)propionate derivatives and evaluated their anticancer activities. A clear structure–activity relationship of compound 1 derivatives focusing on the functional groups at the C-4 position was established based on their anti-proliferative effects against the MDA-MB-231 and HCT-116 cell lines. Compounds 2–6 are 4,4-dimethylated, 4,4-diethylated, 4,4-dibenzylated, 4,4-dipropargylated and 4,4-diallylated compound 1, respectively. Compounds 2m–6m, the ester hydrolysis products of compounds 2–6, respectively, were synthesized and assessed for anticancer activity. Among all compound 1 derivatives, compound 2 emerged as a potential chemotherapeutic agent for colon cancer due to the promising in vivo anti-proliferative activities of 2 (IC50 = 3.10 ± 0.29 μM) and its ester hydrolysis product 2m (IC50 = 2.17 ± 0.16 μM) against HCT-116. The preliminary pharmacokinetic evaluation of 2 implied that 2 and 2m are main contributors to the in vivo efficacy. Compound 2 was further evaluated in an animal study using HCT-116 colon tumor xenograft bearing nude mice. The results revealed a dose-dependent efficacy that led to tumor volume reductions of 27%, 45%, and 60% at 50, 100, and 150 mg/kg doses, respectively. The established structure–activity relationship and pharmacokinetic outcomes of 2 is the guidance for future development of 4,4-disubstituted curcuminoid 2,2-bis(hydroxymethyl)- propionate derivatives as anticancer drug candidates.


Sign in / Sign up

Export Citation Format

Share Document