scholarly journals Multiresponse Optimization of Inoculum Conditions for the Production of Amylases and Proteases by Aspergillus awamori in Solid-State Fermentation of Babassu Cake

2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Aline Machado de Castro ◽  
Mariana Martins Pereira Teixeira ◽  
Daniele Fernandes Carvalho ◽  
Denise Maria Guimarães Freire ◽  
Leda dos Reis Castilho

This work aimed at investigating the simultaneous production of amylases and proteases by solid-state fermentation (SSF) of babassu cake using Aspergillus awamori IOC-3914. By means of experimental design techniques and the desirability function, optimum inoculum conditions (C/N ratio of propagation medium, inoculum age, and concentration of inoculum added to SSF medium) for the production of both groups of enzymes were found to be 25.8, 28.4 h, and 9.1 mg g−1, respectively. Significant influence of both initial C/N ratio and inoculum concentration was observed. Optimum amylolytic activities predicted by this multiresponse analysis were validated by independent experiments, thus indicating the efficacy of this approach.

2010 ◽  
Vol 2010 ◽  
pp. 1-9 ◽  
Author(s):  
Aline Machado de Castro ◽  
Daniele Fernandes Carvalho ◽  
Denise Maria Guimarães Freire ◽  
Leda dos Reis Castilho

Amylases are one of the most important industrial enzymes produced worldwide, with their major application being in ethanol manufacturing. This work investigated the production of amylases by solid-state fermentation of babassu cake, using the filamentous fungus Aspergillus awamori IOC-3914. Lab-scale experiments were carried out to generate input data for simulations of an industrial plant for amylase production. Additionally to the target enzymes, other hydrolases (cellulases, xylanases, and proteases) were also produced, enriching the final product. The most suitable fermentation time was 144 hours, when exoamylase and endoamylase activities of 40.5 and 42.7 U g−1 were achieved, respectively. A first evaluation showed a large impact of the inoculum propagation medium on production costs. Therefore, five propagation media were compared, and PDA medium presented the best cost-benefit ratio. The credits obtained from sales of fermented cake as a coproduct enabled a significant decrease in the production cost of the enzyme product, down to 10.40 USD kg−1.


2019 ◽  
Vol 3 (2) ◽  
pp. 71-77
Author(s):  
Rosa Dorta-Vásquez ◽  
Oscar Valbuena ◽  
Domenico Pavone-Maniscalco

Abstract Paper production generates large quantities of a solid waste known as papermaking sludge (PS), which needs to be handled properly for final disposal. The high amount of this byproduct creates expensive economical costs and induces environmental and ecological risks. Therefore, it is necessary to search uses for PS, in order to reduce the negative environmental impact and to generate a more valuable byproduct. Due to the cellulolytic composition of PS, this work evaluated a solid state fermentation process using it as substrate to obtain spores of the fungus Trichoderma asperellum. Optimal conditions to obtain T. asperellum spores were: 60% water content, 3% (w/w) salts (Nutrisol P® and Nutrisol K®), inoculum concentration at 1x105 spores/g, and pasteurized or sterilized PS. Under these conditions it was possible to obtain 2.37x109 spores/g. T. asperellum spores applied directly to pepper (Capsicum anuum) seeds without PS increased significantly seedling dry mass in greenhouse assays. This work suggests an alternative, economic and abundant substrate for production of T. asperellum spores.


2021 ◽  
Author(s):  
Musaalbakri Abdul Manan ◽  
Colin Webb

Abstract A newly designed, laboratory-scaled and multi-layer squared tray solid state bioreactor (SSB), was developed and successfully operated in solid state fermentation (SSF) conditions. The bioreactor was divided into eight layers of squared perforated trays. Wheat bran was used as a solid substrate for the growth of Aspergillus awamori and Aspergillus oryzae. The SSB was equipped with an oxygen (O2)/carbon dioxide (CO2) gas analyser and a thermocouple. Continuous on-line monitoring of fungal growth could be performed by indirect methods that measure O2 consumed, production of CO2 and metabolic heat. The advantage of using this method is that there are no tedious and time-consuming sampling processes. The evolution of CO2, which represents an accumulation term, was integrated with time and fitted to the Gompertz model in a log-like equation. The Gompertz model generated values that may be used to stimulate and verify the experimental data. Results strongly suggest that the evolved and accumulated CO2, excellently described fungal growth. Simulated results agreed with experimental results. The respiratory quotient (RQ), which is the ratio of CO2 evolution rate (CER) to O2 uptake rate (OUR), was determined by the gas balance method. CER and OUR confirmed that measurements correlated to fungal activity. Each RQ values can explain the differences of each SFF process carried out. Yet, heat evolved by fungal activity also described fungal growth. The current findings is an excellent pre-liminary experimental work, evidencing that multi-layer squared tray SSB with forced moistened aeration present a promising alternative of instrumented bioreactors for SSF processes.


2011 ◽  
Vol 42 (4) ◽  
pp. 1585-1597 ◽  
Author(s):  
Marcelo A. Umsza-Guez ◽  
Ana B. Díaz ◽  
Ignacio de Ory ◽  
Ana Blandino ◽  
Eleni Gomes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document