scholarly journals Branched RNA: A New Architecture for RNA Interference

2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Anna Aviñó ◽  
Sandra M. Ocampo ◽  
José Carlos Perales ◽  
Ramon Eritja

Branched RNAs with two and four strands were synthesized. These structures were used to obtain branched siRNA. The branched siRNA duplexes had similar inhibitory capacity as those of unmodified siRNA duplexes, as deduced from gene silencing experiments of the TNF-α protein. Branched RNAs are considered novel structures for siRNA technology, and they provide an innovative tool for specific gene inhibition. As the method described here is compatible with most RNA modifications described to date, these compounds may be further functionalized to obtain more potent siRNA derivatives and can be attached to suitable delivery systems.

PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2673 ◽  
Author(s):  
Roberto A. Camargo ◽  
Guilherme O. Barbosa ◽  
Isabella Presotto Possignolo ◽  
Lazaro E. P. Peres ◽  
Eric Lam ◽  
...  

RNA interference (RNAi), a gene-silencing mechanism that involves providing double-stranded RNA molecules that match a specific target gene sequence, is now widely used in functional genetic studies. The potential application of RNAi-mediated control of agricultural insect pests has rapidly become evident. The production of transgenic plants expressing dsRNA molecules that target essential insect genes could provide a means of specific gene silencing in larvae that feed on these plants, resulting in larval phenotypes that range from loss of appetite to death. In this report, we show that the tomato leafminer (Tuta absoluta), a major threat to commercial tomato production, can be targeted by RNAi. We selected two target genes (Vacuolar ATPase-AandArginine kinase) based on the RNAi response reported for these genes in other pest species. In view of the lack of an artificial diet forT. absoluta, we used two approaches to deliver dsRNA into tomato leaflets. The first approach was based on the uptake of dsRNA by leaflets and the second was based on “in planta-induced transient gene silencing” (PITGS), a well-established method for silencing plant genes, used here for the first time to deliverin planta-transcribed dsRNA to target insect genes.Tuta absolutalarvae that fed on leaves containing dsRNA of the target genes showed an ∼60% reduction in target gene transcript accumulation, an increase in larval mortality and less leaf damage. We then generated transgenic ‘Micro-Tom’ tomato plants that expressed hairpin sequences for both genes and observed a reduction in foliar damage byT. absolutain these plants. Our results demonstrate the feasibility of RNAi as an alternative method for controlling this critical tomato pest.


2016 ◽  
Author(s):  
Roberto A Camargo ◽  
Guilherme O Barbosa ◽  
Isabella Presotto Possignolo ◽  
Lazaro E. P. Peres ◽  
Eric Lam ◽  
...  

RNA interference (RNAi), a gene-silencing mechanism that involves providing double-stranded RNA molecules that match a specific target gene sequence, is now widely used in functional genetic studies. The potential application of RNAi-mediated control of agricultural insect pests has rapidly become evident. The production of transgenic plants expressing dsRNA molecules that target essential insect genes could provide a means of specific gene silencing in larvae that feed on these plants, resulting in larval phenotypes that range from loss of appetite to death. In this report, we show that the tomato leafminer (Tuta absoluta), a major threat to commercial tomato production, can be targeted by RNAi. We selected two target genes [Vacuolar ATPase-A and Arginine kinase] based on the RNAi response reported for these genes in other pest species. In view of the lack of an artificial diet for T. absoluta, we used two approaches to deliver dsRNA into tomato leaflets. The first approach was based on the uptake of dsRNA by leaflets and the second was based on “in planta-induced transient gene silencing” (PITGS), a well-established method for silencing plant genes, used here for the first time to deliver in planta-transcribed dsRNA to target insect genes. Tuta absoluta larvae that fed on leaves containing dsRNA of the target genes showed an ~60% reduction in target gene transcript accumulation, an increase in larval mortality and less leaf damage. We then generated transgenic ‘Micro-Tom’ tomato plants that expressed hairpin sequences for both genes and observed a reduction in foliar damage by T. absoluta in these plants. Our results demonstrate the feasibility of RNAi as an alternative method for controlling this critical tomato pest.


2016 ◽  
Vol 4 (41) ◽  
pp. 6620-6639 ◽  
Author(s):  
Jinming Li ◽  
Shanshan Xue ◽  
Zong-Wan Mao

RNA interference (RNAi) is a naturally occurring endogenous regulatory process in which the short double-stranded RNA causes sequence-specific post-transcriptional gene silencing.


2021 ◽  
Author(s):  
Tara-Kay L. Jones ◽  
Julio S. Bernal ◽  
Raul F. Medina

Dalbulus maidis [(DeLong & Wolcott), corn leafhopper], a phloem-feeding insect, is the most efficient vector of maize stunting pathogens (Spiroplasma kunkelii, Maize bushy stunt phytoplasma, and Maize rayado fino virus) in the Americas. Studies involving gene editing in insects are rapidly providing information that can potentially be used for insect vector and plant disease control. RNA interference (RNAi), a sequence-specific gene silencing method, is one of the most widely used molecular tools in functional genomics studies. RNAi uses exogenous double-stranded RNA (dsRNA) or small interfering RNA (siRNA) to prevent the production of proteins by inhibiting the expression of their corresponding messenger RNA (mRNA). In this study, we measured the efficacy of gene silencing, and its effects on D. maidis mortality as proof of concept that RNAi is a viable tool for use in genetic pest control of phloem-feeding insects. Oral delivery of dsRNA using an artificial diet was used to silence two key insect genes, vacuolar ATP synthase subunit B, and subunit D (V-ATPase B and V-ATPase D). Our results showed reduced gene expression of V-ATPase B and V-ATPase D after ingestion of dsRNA, and significantly higher mortality, and wing deformation, associated with reduced gene expression, compared to control insects that were not orally fed dsRNA. These results reveal RNAi as a viable tool for use in genetic pest control of phloem-feeding insects, and a way for further functional genomic studies, such as identification of potential target genes for either population suppression or population replacement of this vector of maize diseases.


Author(s):  
Connor Phalon ◽  
Donald D. Rao ◽  
John Nemunaitis

RNA interference (RNAi) is an evolutionary conserved mechanism for specific gene silencing. This mechanism has great potential for use in targeted cancer therapy. Understanding the RNAi mechanism has led to the development of several novel RNAi-based therapeutic approaches currently in the early phases of clinical trials. It remains difficult to effectively deliver the nucleic acids required in vivo to initiate RNAi, and intense effort is under way in developing effective and targeted systemic delivery systems for RNAi. Description of in vivo delivery systems is not the focus of this review. In this review, we cover the rationale for pursuing personalised cancer therapy with RNAi, briefly review the mechanism of each major RNAi therapeutic technique, summarise and sample recent results with animal models applying RNAi for cancer, and provide an update on current clinical trials with RNAi-based therapeutic agents for cancer therapy. RNAi-based cancer therapy is still in its infancy, and there are numerous obstacles and issues that need to be resolved before its application in personalised therapy focusing on patient-cancer-specific targets can become standard cancer treatment, either alone or in combination with other treatments.


Agronomy ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 136
Author(s):  
Mohammad Faisal ◽  
Eslam M. Abdel-Salam ◽  
Abdulrahman A. Alatar

RNA Interference (RNAi), which works against invading nucleic acids or modulates the expression of endogenous genes, is a natural eukaryotic regulating system, and it works by noncoding smaller RNA molecules. Plant-mediated gene silencing through RNAi can be used to develop plants with insect tolerance at transcriptional or post-transcriptional levels. In this study, we selected Myzus persicae’s acetylcholinesterase 1 gene (Ace 1) as a silencing target to develop transgenic Solanum lycopersicum L. plants’ resistance to aphids. An RNAi plasmid vector containing an artificial microRNA (amiRNA) sequence was engineered and successfully transformed into Jamila and Tomaland, two elite tomato cultivars. A northern blot analysis and PCR were carried out to check the efficacy of Agrobacterium-mediated transformation in T0 transgenic plants. The quantitative PCR data showed a substantial downregulation of the Ace 1 gene in aphids fed in clip cages on T1 transgenic plants. Furthermore, there was a substantial drop in aphid colonies that were fed on T1 transgenic plants of both the cultivars. These findings strongly suggest that transgenic plants that express amiRNA could be an important tool for engineering plants resistant to aphids and possibly for the prevention of viral disease in other plant-infested pests.


2016 ◽  
Author(s):  
Roberto A Camargo ◽  
Guilherme O Barbosa ◽  
Isabella Presotto Possignolo ◽  
Lazaro E. P. Peres ◽  
Eric Lam ◽  
...  

RNA interference (RNAi), a gene-silencing mechanism that involves providing double-stranded RNA molecules that match a specific target gene sequence, is now widely used in functional genetic studies. The potential application of RNAi-mediated control of agricultural insect pests has rapidly become evident. The production of transgenic plants expressing dsRNA molecules that target essential insect genes could provide a means of specific gene silencing in larvae that feed on these plants, resulting in larval phenotypes that range from loss of appetite to death. In this report, we show that the tomato leafminer (Tuta absoluta), a major threat to commercial tomato production, can be targeted by RNAi. We selected two target genes [Vacuolar ATPase-A and Arginine kinase] based on the RNAi response reported for these genes in other pest species. In view of the lack of an artificial diet for T. absoluta, we used two approaches to deliver dsRNA into tomato leaflets. The first approach was based on the uptake of dsRNA by leaflets and the second was based on “in planta-induced transient gene silencing” (PITGS), a well-established method for silencing plant genes, used here for the first time to deliver in planta-transcribed dsRNA to target insect genes. Tuta absoluta larvae that fed on leaves containing dsRNA of the target genes showed an ~60% reduction in target gene transcript accumulation, an increase in larval mortality and less leaf damage. We then generated transgenic ‘Micro-Tom’ tomato plants that expressed hairpin sequences for both genes and observed a reduction in foliar damage by T. absoluta in these plants. Our results demonstrate the feasibility of RNAi as an alternative method for controlling this critical tomato pest.


2006 ◽  
Vol 2006 ◽  
pp. 1-15 ◽  
Author(s):  
Achim Aigner

RNA interference (RNAi) is a powerful method for specific gene silencing which may also lead to promising novel therapeutic strategies. It is mediated through small interfering RNAs (siRNAs) which sequence-specifically trigger the cleavage and subsequent degradation of their target mRNA. One critical factor is the ability to deliver intact siRNAs into target cells/organs in vivo. This review highlights the mechanism of RNAi and the guidelines for the design of optimal siRNAs. It gives an overview of studies based on the systemic or local application of naked siRNAs or the use of various nonviral siRNA delivery systems. One promising avenue is the the complexation of siRNAs with the polyethylenimine (PEI), which efficiently stabilizes siRNAs and, upon systemic administration, leads to the delivery of the intact siRNAs into different organs. The antitumorigenic effects of PEI/siRNA-mediated in vivo gene-targeting of tumor-relevant proteins like in mouse tumor xenograft models are described.


RSC Advances ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 2415-2426
Author(s):  
Andrew J. Varley ◽  
Jean-Paul Desaulniers

Therapeutic small interfering RNAs (siRNAs) are double stranded RNAs capable of potent and specific gene silencing through activation of the RNA interference (RNAi) pathway.


Sign in / Sign up

Export Citation Format

Share Document