scholarly journals Soil water content effects on net ecosystem CO2 exchange and actual evapotranspiration in a Mediterranean semiarid savanna of Central Chile

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Francisco J. Meza ◽  
Carlo Montes ◽  
Felipe Bravo-Martínez ◽  
Penélope Serrano-Ortiz ◽  
Andrew S. Kowalski
1975 ◽  
Vol 6 (3) ◽  
pp. 170-188 ◽  
Author(s):  
K. J. KRISTENSEN ◽  
S. E. JENSEN

A model for calculating the daily actual evapotranspiration based on the potential one is presented. The potential evapotranspiration is reduced according to vegetation density, water content in the root zone, and the rainfall distribution. The model is tested by comparing measured (EAm) and calculated (EAc) evapotranspirations from barley, fodder sugar beets, and grass over a four year period. The measured and calculated values agree within 10 %. The model also yields information on soil water content and runoff from the root zone.


2018 ◽  
Vol 22 (7) ◽  
pp. 4125-4143 ◽  
Author(s):  
Enrica Perra ◽  
Monica Piras ◽  
Roberto Deidda ◽  
Claudio Paniconi ◽  
Giuseppe Mascaro ◽  
...  

Abstract. This work addresses the impact of climate change on the hydrology of a catchment in the Mediterranean, a region that is highly susceptible to variations in rainfall and other components of the water budget. The assessment is based on a comparison of responses obtained from five hydrologic models implemented for the Rio Mannu catchment in southern Sardinia (Italy). The examined models – CATchment HYdrology (CATHY), Soil and Water Assessment Tool (SWAT), TOPographic Kinematic APproximation and Integration (TOPKAPI), TIN-based Real time Integrated Basin Simulator (tRIBS), and WAter balance SImulation Model (WASIM) – are all distributed hydrologic models but differ greatly in their representation of terrain features and physical processes and in their numerical complexity. After calibration and validation, the models were forced with bias-corrected, downscaled outputs of four combinations of global and regional climate models in a reference (1971–2000) and future (2041–2070) period under a single emission scenario. Climate forcing variations and the structure of the hydrologic models influence the different components of the catchment response. Three water availability response variables – discharge, soil water content, and actual evapotranspiration – are analyzed. Simulation results from all five hydrologic models show for the future period decreasing mean annual streamflow and soil water content at 1 m depth. Actual evapotranspiration in the future will diminish according to four of the five models due to drier soil conditions. Despite their significant differences, the five hydrologic models responded similarly to the reduced precipitation and increased temperatures predicted by the climate models, and lend strong support to a future scenario of increased water shortages for this region of the Mediterranean basin. The multimodel framework adopted for this study allows estimation of the agreement between the five hydrologic models and between the four climate models. Pairwise comparison of the climate and hydrologic models is shown for the reference and future periods using a recently proposed metric that scales the Pearson correlation coefficient with a factor that accounts for systematic differences between datasets. The results from this analysis reflect the key structural differences between the hydrologic models, such as a representation of both vertical and lateral subsurface flow (CATHY, TOPKAPI, and tRIBS) and a detailed treatment of vegetation processes (SWAT and WASIM).


2011 ◽  
Vol 71 (4) ◽  
pp. 615-622 ◽  
Author(s):  
Ingrid Martinez G ◽  
Carlos Ovalle ◽  
Alejandro Del Pozo ◽  
Hamil Uribe ◽  
Natalia Valderrama V ◽  
...  

2020 ◽  
Vol 17 (8) ◽  
pp. 2365-2379
Author(s):  
Barbara Marcolla ◽  
Mirco Migliavacca ◽  
Christian Rödenbeck ◽  
Alessandro Cescatti

Abstract. In the last decades terrestrial ecosystems have reabsorbed on average more than one-quarter of anthropogenic emissions (Le Quéré et al., 2018). However, this large carbon sink is modulated by climate and is therefore highly variable in time and space. The magnitude and temporal changes in the sensitivity of terrestrial CO2 fluxes to climate drivers are key factors to determine future atmospheric CO2 concentration and climate trajectories. In the literature, there is so far a strong focus on the climatic controls of daily and long-term variability, while less is known about the key drivers at a seasonal timescale and about their variation over time (Wohlfahrt et al., 2008). This latter temporal scale is relevant to assess which climatic drivers dominate the seasonality of the fluxes and to understand which factors limit the CO2 exchange during the course of the year. Here, we investigate the global sensitivity of net terrestrial CO2 fluxes, derived from atmospheric inversion, to three key climate drivers (i.e. global radiation and temperature from WFDEI and soil water content from ERA-Interim) from weekly to seasonal temporal scales, in order to explore the short-term interdependence between climate and the terrestrial carbon budget. We observed that the CO2 exchange is controlled by temperature during the carbon uptake period over most of the land surface (from 55 % to 52 % of the total surface), while radiation is the most widespread dominant climate driver during the carbon release period (from 64 % to 70 % of the total surface). As expected, soil water content plays a key role in arid regions of the Southern Hemisphere during both the carbon uptake and the carbon release period. Looking at the decadal trend of these sensitivities (1985–2016) we observed that the importance of radiation as a driver is increasing over time, while we observed a decrease in sensitivity to temperature in Eurasia. Overall, we show that flux temporal variation due to a specific driver has been dominated by the temporal changes in ecosystem sensitivity (i.e. the response of ecosystem to climate) rather than to the temporal variability of the climate driver itself over the last decades. Ultimately, this analysis shows that the ecosystem response to climate is significantly changing both in space and in time, with potential repercussion on the future terrestrial CO2 sink and therefore on the role that land may play in climate trajectories.


2009 ◽  
Vol 6 (6) ◽  
pp. 10707-10735 ◽  
Author(s):  
N. Pingintha ◽  
M. Y. Leclerc ◽  
J. P. Beasley ◽  
G. Zhang ◽  
C. Senthong ◽  
...  

Abstract. Continuous measurements of net ecosystem CO2 exchange (NEE) using the eddy-covariance method were made over an agricultural ecosystem in the southeastern US. During optimum environmental conditions, photosynthetically active radiation (PAR) was the primary climatic factor controlling daytime NEE, accounting for 67 to 89% of variations in NEE. However, soil water content (SWC) was the dominant factor limiting the NEE-PAR response during the peak growth stage, as NEE was significantly depressed when PAR exceeding 1300 μmol photons m−2 s−1 coincided with a very low soil water content (SWC<0.04 m3 m−3). Hysteresis was observed between daytime NEE and PAR during periods of water-stress resulting from high vapor pressure deficit (VPD). This is significant since it limits the range of applicability of the Michaelis-Menten equation, and the likes, to determine daytime NEE as a function of PAR. The systematic presence of hysteresis in the response of NEE to PAR suggests that the gap-filling technique based on a non-linear regression approach should take into account the presence of water-limiting field conditions. Including this step is therefore likely to improve current evaluations of ecosystem response to climate change.


2010 ◽  
Vol 7 (3) ◽  
pp. 1159-1170 ◽  
Author(s):  
N. Pingintha ◽  
M. Y. Leclerc ◽  
J. P. Beasley ◽  
D. Durden ◽  
G. Zhang ◽  
...  

Abstract. Continuous measurements of net ecosystem CO2 exchange (NEE) using the eddy-covariance method were made over an agricultural ecosystem in the southeastern US. During optimum environmental conditions, photosynthetically active radiation (PAR) was the primary driver controlling daytime NEE, accounting for as much as 67 to 89% of the variation in NEE. However, soil water content became the dominant factor limiting the NEE-PAR response during the peak growth stage. NEE was significantly depressed when high PAR values coincided with very low soil water content. The presence of a counter-clockwise hysteresis of daytime NEE with PAR was observed during periods of water stress. This is a result of the stomatal closure control of photosynthesis at high vapor pressure deficit and enhanced respiration at high temperature. This result is significant since this hysteresis effect limits the range of applicability of the Michaelis-Menten equation and other related expressions in the determination of daytime NEE as a function of PAR. The systematic presence of hysteresis in the response of NEE to PAR suggests that the gap-filling technique based on a non-linear regression approach should take into account the presence of water-limited field conditions. Including this step is therefore likely to improve current evaluation of ecosystem response to increased precipitation variability arising from climatic changes.


2018 ◽  
Author(s):  
Enrica Perra ◽  
Monica Piras ◽  
Roberto Deidda ◽  
Claudio Paniconi ◽  
Giuseppe Mascaro ◽  
...  

Abstract. This work addresses the impact of climate change on the hydrology of a catchment in the Mediterranean, a region that is highly susceptible to variations in rainfall and other components of the water budget. The assessment is based on a comparison of responses obtained from five hydrologic models implemented for the Rio Mannu catchment in southern Sardinia (Italy). The examined models – CATchment HYdrology (CATHY), Soil and Water Assessment Tool (SWAT), TOPographic Kinematic APproximation and Integration (TOPKAPI), TIN-based Real time Integrated Basin Simulator (tRIBS), and WAter balance SImulation Model (WASIM) – are all distributed hydrologic models but differ greatly in their representation of terrain features and physical processes and in their numerical complexity. After calibration and validation, the models were forced with bias-corrected, downscaled outputs of four combinations of global and regional climate models in a reference (1971–2000) and a future (2041–2070) period under a single emission scenario. Climate forcing variations and the structure of the hydrologic models influence the different components of the catchment response. Three water availability response variables – discharge, soil water content, and actual evapotranspiration – are analyzed. Simulation results from all five hydrologic models show for the future period decreasing mean annual streamflow and soil water content at 1 m depth. Actual evapotranspiration in the future will diminish according to four of the five models due to drier soil conditions. Despite their significant differences, the five hydrologic models responded similarly to the reduced precipitation and increased temperatures predicted by the climate models, and lend strong support to a future scenario of increased water shortages for this region of the Mediterranean basin. The multimodel framework adopted for this study allows estimation of the agreement between the five hydrologic models and between the four climate models. Pairwise comparison of the climate and hydrologic models is shown for the reference and future periods using a recently proposed metric that scales the Pearson correlation coefficient with a factor that accounts for systematic differences between datasets. The results from this analysis reflect the key structural differences between the hydrologic models, such as a representation of both vertical and lateral subsurface flow (CATHY, TOPKAPI, and tRIBS) and a detailed treatment of vegetation processes (SWAT and WASIM).


2020 ◽  
Vol 241 ◽  
pp. 106346
Author(s):  
Roberto Filgueiras ◽  
Thomé Simpliciano Almeida ◽  
Everardo Chartuni Mantovani ◽  
Santos Henrique Brant Dias ◽  
Elpídio Inácio Fernandes-Filho ◽  
...  

2019 ◽  
Author(s):  
Barbara Marcolla ◽  
Mirco Migliavacca ◽  
Christian Rödenbeck ◽  
Alessandro Cescatti

Abstract. In the last decades terrestrial ecosystems have reabsorbed on average more than one quarter of anthropogenic emissions (Le Quéré et al., 2018). However, this large carbon sink is modulated by climate and is therefore highly variable in time and space. The magnitude and temporal changes of the sensitivity of terrestrial CO2 fluxes to climate drivers are key factors to determine future atmospheric CO2 concentration and climate trajectories. In the literature there is so far a strong focus on the climatic controls of inter-annual variability, while less is known about the key drivers of the sub-annual variability of the fluxes. This latter temporal scale is relevant to assess which climatic drivers dominate the seasonality of the fluxes and to understand which factors limit the net ecosystem CO2 exchange. Here, we investigated the global sensitivity of terrestrial CO2 fluxes to three key climate drivers (i.e. global radiation, temperature and soil water content) from weekly to seasonal temporal scales, in order to explore the short-term interdependence between climate and the terrestrial carbon budget. We observed that the CO2 exchange over most of the land surface is controlled by temperature during the carbon uptake period, while radiation is the most widespread dominant climate driver during the carbon release period. As expected, soil water content plays a key role in arid regions of the southern hemisphere. Looking at the decadal trend of these sensitivities we observed that the importance of radiation as a driver is increasing over time, while we observed a decrease in sensitivity to temperature in Eurasia. Overall, we show that the temporal variation of the fluxes due to a specific driver is dominated by the temporal changes in ecosystem sensitivity rather than to the temporal variability of the driver itself. Ultimately this analysis shows that the response of the ecosystem to climate drivers is significantly changing both in space and in time, with potential repercussion on the future terrestrial CO2 sink and therefore on the role that land may play in climate mitigation.


Author(s):  
M.C.H.Mouat Pieter Nes

Reduction in water content of a soil increased the concentration of ammonium and nitrate in solution, but had no effect on the concentration of phosphate. The corresponding reduction in the quantity of phosphate in solution caused an equivalent reduction in the response of ryegrass to applied phosphate. Keywords: soil solution, soil water content, phosphate, ryegrass, nutrition.


Sign in / Sign up

Export Citation Format

Share Document