Improving System Performance with eGaN® FETs in DC-DC Applications

2013 ◽  
Vol 2013 (1) ◽  
pp. 000764-000769 ◽  
Author(s):  
David Reusch ◽  
Johan Strydom ◽  
Alex Lidow

The intermediate bus architecture (IBA) is currently the most popular power system architecture in computing and telecommunications equipment. It typically consists of a +48 V system power distribution bus that feeds on-board isolated converters, which in turn supply power to a 12 V power bus. From the 12 V power bus, the final power is delivered to the end loads by regulated non-isolated point of load (POL) converters. In this paper we demonstrate substantial system gains using enhancement mode gallium nitride power transistors in high frequency isolated and non-isolated DC-DC converters. These transistors, also known as eGaN® FETs, have been commercially available for over three years and are making significant inroads replacing the aging silicon power MOSFET.

2021 ◽  
Author(s):  
Sara Klaasen ◽  
Patrick Paitz ◽  
Jan Dettmer ◽  
Andreas Fichtner

<p>We present one of the first applications of Distributed Acoustic Sensing (DAS) in a volcanic environment. The goals are twofold: First, we want to examine the feasibility of DAS in such a remote and extreme environment, and second, we search for active volcanic signals of Mount Meager in British Columbia (Canada). </p><p>The Mount Meager massif is an active volcanic complex that is estimated to have the largest geothermal potential in Canada and caused its largest recorded landslide in 2010. We installed a 3-km long fibre-optic cable at 2000 m elevation that crosses the ridge of Mount Meager and traverses the uppermost part of a glacier, yielding continuous measurements from 19 September to 17 October 2019.</p><p>We identify ~30 low-frequency (0.01-1 Hz) and 3000 high-frequency (5-45 Hz) events. The low-frequency events are not correlated with microseismic ocean or atmospheric noise sources and volcanic tremor remains a plausible origin. The frequency-power distribution of the high-frequency events indicates a natural origin, and beamforming on these events reveals distinct event clusters, predominantly in the direction of the main peaks of the volcanic complex. Numerical examples show that we can apply conventional beamforming to the data, and that the results are improved by taking the signal-to-noise ratio of individual channels into account.</p><p>The increased data quantity of DAS can outweigh the limitations due to the lower quality of individual channels in these hazardous and remote environments. We conclude that DAS is a promising tool in this setting that warrants further development.</p>


2021 ◽  
Author(s):  
Larry Obst ◽  
Andrew Merlino ◽  
Alex Parlos ◽  
Dario Rubio

Abstract This paper describes the technology and processes used to identify in a timely matter the source of an Instantaneous Over Current (IOC) trip during an ESP re-start at Shell Perdido SPAR. Monitoring health condition of subsea ESPs is challenging. ESPs operate in harsh and remote environments which makes it difficult to implement and maintain any in-situ monitoring system. Shell operates five subsea ESPs and implemented a topside conditioning monitoring system using electrical waveform analysis. The Perdido SPAR had a scheduled maintenance shutdown in April 2019. While ramping the facility down on April 19, 2019 the variable frequency drive (VFD) for ESP-E tripped on a cell overvoltage fault. The cell was changed, but the VFD continued to trip on instantaneous overcurrent. During ramp up beginning April 29, 2019 most equipment came back online smoothly, but the VFD of the particular ESP labeled ESP-E continued to experience the problem that was causing overcurrent trips, preventing restart. Initial investigations could not pinpoint the source of the issue. On May 1, 2019 Shell sought to investigate this issue using high-frequency electrical waveform data recorded topside as an attempt to better pinpoint the source of this trip. Analysis of electrical waveform before, during and after the IOC trip found an intermittent shorting/arcing at the VFD and ruled out any issues with the 7,000-foot-long umbilical cable or ESP motor. Upon further inspection, a VFD technician was able to visually identify the source of the problem. Relying in part on electrical waveform findings, VFD technician found failed outer jackets in the MV shielded cables at the output filter section creating a ground path from the VFD output bus via the cable shield. The cables were replaced, and the problem was alleviated allowing the system to return to normal operation. Shell credits quick and accurate analysis of electrical waveform with accelerating troubleshooting activities on the VFD, saving approximately 1-2 days of troubleshooting time and associated downtime savings, that translate to approximately 50,000 BOE deferment reduction. Analysis of high-frequency electrical waveform using physics-based and machine learning algorithms enables one to extract long-term changes in ESP health, while filtering out the shorter-term changes caused by operating condition variations. This novel approach to analysis provides operators with a reliable source of information for troubleshooting and diagnosing failure events to reduce work-over costs and limit production losses.


2020 ◽  
Vol 13 (9) ◽  
pp. 1807-1818
Author(s):  
M. Jagabar Sathik ◽  
Kaustubh Bhatnagar ◽  
Yam P. Siwakoti ◽  
Hussain M. Bassi ◽  
Muhyaddin Rawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document