scholarly journals Monitoring a newly re-born patient: water quality and cyanotoxin occurrence in a reconstructed shallow Mediterranean lake

Author(s):  
Spyros Gkelis ◽  
Manthos Panou ◽  
Ioannis Chronis ◽  
Sevasti-Kiriaki Zervou ◽  
Christophoros Christophoridis ◽  
...  

Lake Karla (Central Greece) is a unique example - at European scale - of a shallow lake ecosystem that was dried in the 1960s and in 2009 started to be restored. The lake is listed in the network of the Greek protected areas as it is considered a vital aquatic ecosystem, in terms of biodiversity. It has, however, already been adversely affected by both agricultural and industrial land uses in the surrounding area, leading to eutrophication and shifting algal community towards bloom-forming toxic cyanobacterial species. After repeated heavy-blooms, cyanotoxin occurrence and mass fish kills, the local ecosystem management authority has implemented a water quality monitoring program (July 2013 - July 2015) to assess environmental pressures and the response of aquatic biota in the lake. Microscopic, immunological, and molecular techniques combined with physico-chemical parameters, complemented by liquid chromatography tandem mass spectrometry (LC-MS/MS), were used to monitor cyanobacteria blooms and the associated cyanotoxin production from three different sites in Lake Karla and from the adjacent Kalamaki Reservoir. Water quality was also assessed by the structure of benthic invertebrate community on the sediment. Cyanobacteria were the main phytoplankton component, representing more than 70% of the total phytoplankton abundance; dominant taxa belonged to Cylindrospermopsis raciborskii, Limnothrix redekei, Anabaenopsis elenkinii, and Microcystis spp. Euglenophytes (Euglena), diatoms (Nitzschia), and chlorophytes (Scenedesmus) were also important phytoplankton constituents. LC-MS/MS confirmed the co-occurrence of microcystins, cylindrospermopsin, saxitoxin, neo-saxitoxin and anatoxin-a. The occurrence of cyanotoxins in relation to the persistent and dominant cyanobacteria and the impact of cyanobacterial harmful algal blooms on the newly constructed lake along with the land uses and the emergent mitigation measures are discussed. 

Author(s):  
B. K. A. Bellanthudawa ◽  
D. Halwatura ◽  
N. M. S. K. Nawalage ◽  
H. M. A. K. Handapangoda ◽  
S. R. Y. S. S. B. Sundarapperuma ◽  
...  

Abstract Identification and quantification of environmental and socio-economic impact risks and effective monitoring of water projects are crucial for sustainable water resource management. Hence, the present study was conducted with the objectives of identifying potential environmental risks of different stages of the development of a new water supply scheme located in the wet zone of Sri Lanka, and categorizing identified impacts based on their significance. A rapid environmental assessment (REA) was followed to identify the upstream point source pollution and downstream water uses in the immediate catchment. Subsequently, a semi-quantitative approach was conducted to screen the environmental, social, and economic risks concerning likelihood and sensitivity of the impact. Besides, an analysis of physico-chemical and biological parameters of water quality was conducted in the intake location. The semi-quantitative method highlighted that low and medium risk with ecological impacts (50%), low risks towards sustainability of water source (75%), medium level constructional impacts (60%), and very high-level impacts at the operational stage were available (50%). A water quality monitoring program revealed that Escherichia coli count, total coliform bacterial count, and colour of the water were above the standard limits in the nearby freshwater source. In conclusion, a similar approach can be implemented worldwide as a reference to determine the potential socio-environmental consequences in water supply projects to minimize the adverse impacts. Through this study, sustainable mitigation measures were proposed accordingly to prevent the impacts and to strengthen the long-term viability of the new Rural Water Supply Scheme.


Author(s):  
P. G. Whitehead ◽  
J. Crossman ◽  
B. B. Balana ◽  
M. N. Futter ◽  
S. Comber ◽  
...  

The catchment of the River Thames, the principal river system in southern England, provides the main water supply for London but is highly vulnerable to changes in climate, land use and population. The river is eutrophic with significant algal blooms with phosphorus assumed to be the primary chemical indicator of ecosystem health. In the Thames Basin, phosphorus is available from point sources such as wastewater treatment plants and from diffuse sources such as agriculture. In order to predict vulnerability to future change, the integrated catchments model for phosphorus (INCA-P) has been applied to the river basin and used to assess the cost-effectiveness of a range of mitigation and adaptation strategies. It is shown that scenarios of future climate and land-use change will exacerbate the water quality problems, but a range of mitigation measures can improve the situation. A cost-effectiveness study has been undertaken to compare the economic benefits of each mitigation measure and to assess the phosphorus reductions achieved. The most effective strategy is to reduce fertilizer use by 20% together with the treatment of effluent to a high standard. Such measures will reduce the instream phosphorus concentrations to close to the EU Water Framework Directive target for the Thames.


Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 937 ◽  
Author(s):  
Cristina Mateus ◽  
Christian A. Guerrero ◽  
Galo Quezada ◽  
Daniel Lara ◽  
Valeria Ochoa-Herrera

Water quality in Galápagos has been deteriorating by increased human impacts over the past few decades. Water quality is a key environmental component and issue in need to be evaluated in the Pelican Bay Watershed, the biggest urban and economic development of Santa Cruz Island, for better management and regulation of water resources. This study assesses coastal and ground water bodies of Pelican Bay by employing a 9-year dataset obtained during a local water quality monitoring program conducted by the Galápagos National Park. Physical-chemical and microbial parameters were evaluated with respect to national and international water quality standards. A statistical integrated approach was performed to calculate environmental background levels of water quality parameters and to explore their seasonal and spatial variation. In addition, a sensitivity analysis was conducted to evaluate the impact of changes in tourism and residents in San Cruz Island in the degradation of water sources. Results highlighted are: (a) water is not suitable for drinking and domestic use at some inland sites; (b) saline water is used for irrigation in the highlands; (c) the presence of parameters of concern at coastal sites represent a risk for human and ecosystem health; (d) background levels may serve for defining site-specific limits to control water quality, and; (e) the influence of population change on water quality conditions varied at each site with a higher effect at coastal sites relatively to inland sites. This study provided valuable information of the water quality status in Santa Cruz Island and can serve as a baseline for effective water management and control of pollution.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Fiona-Annilow Wera ◽  
Teck-Yee Ling ◽  
Lee Nyanti ◽  
Siong-Fong Sim ◽  
Jongkar Grinang

Water quality downstream of a hydroelectric dam is potentially affected by dam operations and other land uses in the river basin. Previous short-distance studies below the large Bakun Dam indicated poorer water quality during closed spillway. However, the extent of the impact is still unknown. Such knowledge is essential for mitigating the impact of the dam. Thus, the objectives of this study were to determine the water quality up to a distance of 210 km under two spillway operations, namely, closed and opened spillways, and also to determine the changes in water quality from the predam condition. Physicochemical parameters were measured at 15 stations along the Rajang River. Results of this preliminary study indicated that there were significant differences in eight out of nine water quality parameters between opened and closed spillway operations with opened spillway showing better water quality. During closed spillway, as we approached the dam, there was an increasing acidity and a decreasing oxygen content. Furthermore, as the water flows downstream, the unhealthy DO level (<5 mg/L) extended up to 165 km and the linear model showed an increasing DO rate of 0.09 mg/L per km. With opened spillway, DO decreased exponentially from 9.74 mg/L towards the downstream direction to 7.67 mg/L. The increasing turbidity and TSS in the downstream direction indicate contributions from erosion due to other land uses. The river is polluted with organics as indicated by COD of Class IV or V with sources from the dam and the activities in the river basin. Compared to the predam condition, the regulated river is less turbid but warmer and higher in ammonia. Closed spillway led to lower DO and acidic water. However, opened spillway water pH and DO were similar to those in the predam condition. Thus, it is recommended that DO be consistently high enough for the health of sensitive aquatic organisms downstream.


2001 ◽  
Vol 43 (9) ◽  
pp. 133-144 ◽  
Author(s):  
B. Greenop ◽  
K. Lovatt ◽  
M. Robb

Artificial oxygenation has been used for two summer periods to improve the water quality of the Canning River in Perth, Western Australia. The project is part of the Swan Canning Cleanup Program, which aims to reduce the frequency and severity of nuisance and toxic algal blooms in the Swan-Canning estuary. The trials have proved that oxygenation has increased the dissolved oxygen concentrations in the water column, particularly in the bottom waters where dissolved oxygen concentrations are frequently below a critical level of three milligrams per litre. Oxygenation has had a positive impact on nutrient concentrations in the water column and nitrogen cycling processes. Reductions in nutrient concentrations were highlighted by drops in ammonium and total phosphorus concentrations of 97% and 64% following the recommencement of oxygenation after a plant shutdown. Results of a microbiological study combined with the data analysis indicate that the number of nitrifying microbes have increased due to oxygenation. However, comparisons between oxygenated and control areas were inconclusive about the ability of the oxygenation plant to reduce total nitrogen and phosphorus levels. This could be explained by factors such as spatial variability, water flow during the trials and measurement limitations in the monitoring program. Future work will concentrate on assessing the impact of the oxygenation plant on nutrient concentrations.


2018 ◽  
Vol 52 (4) ◽  
pp. 88-93
Author(s):  
Susan Hamburger ◽  
Kenneth T. Gioeli ◽  
David Berthold ◽  
H. Dail Laughinghouse

AbstractThe University of Florida's Institute of Food and Agricultural Sciences (UF/IFAS) Florida Master Naturalist Program (FMNP) is an adult environmental education program with more than 450 trained program graduates in St. Lucie County, Florida. It is a collaborative effort of the UF/IFAS Extension St. Lucie County, St. Lucie County Environmental Resources Department, and partner agencies. Four UF/IFAS Florida Master Naturalist volunteers were recruited and received training and supplies to conduct water quality testing and algae collection in the Indian River Lagoon as part of the Volunteer Algae Monitoring Program (VAMP). The UF/IFAS research and extension faculty developed VAMP in response to the 2016 harmful algal blooms (HABs) in the Indian River Lagoon that resulted in dramatic impacts on businesses, residents, and visitors in Martin, St. Lucie, and Indian River counties. These HAB episodes demonstrate the importance of having informed citizen scientists with an understanding of the problems and threats. The VAMP citizen scientists conducted a water quality awareness survey with the general public after proactively scouting for HABs by collecting samples and conducting water quality testing at three waypoints in the Indian River Lagoon during May to November 2017 (excluding October) and February 2018. They utilized UF/IFAS Water Watch chemistry tests and processed and shipped water samples to the Laughinghouse Lab at the UF/IFAS Fort Lauderdale Research and Education Center, which conducted algae counts and genetic testing to determine the presence of harmful algae expressing microcystin-producing genes. Test results indicated fluctuating and inconsistent levels of saxitoxin but no indications of microcystins across the three sites and over time.


2002 ◽  
Vol 7 (3) ◽  
pp. 189-199 ◽  
Author(s):  
Karen G. Wayland ◽  
David W. Hyndman ◽  
David Boutt ◽  
Bryan C. Pijanowski ◽  
David T. Long

2009 ◽  
Vol 71-73 ◽  
pp. 21-27 ◽  
Author(s):  
Cecilia Demergasso

The paper “Bacterial succession in bioheap leaching” [1] initiated the search for methods to analyze the microbial dynamics in bioleaching industrial processes as a key to advancing commercial bioheap applications. “Chemical and physical conditions within bioheaps change radically from the time the bioheap is stacked and inoculated until bioleaching is completed.” The results from a comprehensive monitoring program by culturing and molecular techniques in an industrial bioleaching process for Run-of-mine (ROM) low grade copper sulfide ore in Chile will be summarized. The analysis of the compiled information permits an understanding of changes in microbial substrates availability, chemical and physical conditions. The impact of other aspects on microbiology, such as the mining programme and the industrial design are also considered. The bacterial succession in bioheap leaching solutions allowed the leaching cycle stages to be describe as: i) Acid conditioning and soluble copper releasing, ii) Chalcocite Bacterial leaching (ferrous oxidation); iii) Chalcocite Bacterial leaching (ferrous and reduced sulfur compounds –RSC- oxidation); iv) Bacterial leaching of sulphide minerals with higher rest potentials (pyrite and covellite ), v) Bacterial oxidation of remnant sulfide minerals and RSC.


2015 ◽  
Vol 13 (4) ◽  
pp. 1060-1072 ◽  
Author(s):  
Farida M. S. E. El-Dars ◽  
M. A. M. Abdel Rahman ◽  
Olfat M. A. Salem ◽  
El-Sayed A. Abdel-Aal

Algal blooms at the major water treatment plants in Egypt have been reported since 2006. While previous studies focused on algal types and their correlation with disinfection by-products, correlation between raw water quality and algal blooms were not explored. Therefore, a survey of Nile water quality parameters at a major water intake in the Greater Cairo Urban Region was conducted from December 2011 to November 2012. Bench-scale experiments were conducted to evaluate the effectiveness of the conventional chloride/alum treatment compared with combined Cl/permanganate pre-oxidation with Al and Fe coagulants during the outbreak period. Addition of permanganate (0.5 mg/L) significantly reduced the chlorine demand from 5.5 to 2.7 mg/L. The applied alum coagulant dose was slightly reduced while residual Al was reduced by 27% and the algal count by 50% in the final treated waters. Applying ferric chloride and ferric sulfate as coagulants to waters treated with the combined pre-oxidation procedure effectively reduced algal count by 60% and better the total organic carbon reduction and residual aluminum in the treated water. Multivariate statistical analysis was used to identify the relationship between water quality parameters and occurrence of algae and to explain the impact of coagulants on the final water quality.


Sign in / Sign up

Export Citation Format

Share Document