scholarly journals Ciliary neurotrophic factor (CNTF) and its receptor (CNTFRα) signal through MAPK/ERK pathway in human prostate tissues: a morphological and biomolecular study

2020 ◽  
Vol 64 (4) ◽  
Author(s):  
Sonia Fantone ◽  
Giovanni Tossetta ◽  
Rodolfo Montironi ◽  
Martina Senzacqua ◽  
Daniela Marzioni ◽  
...  

Ciliary neurotrophic factor (CNTF) is a member of interleukin-6 type cytokine family. The CNTF receptor complex is a heterodimer including gp130 and CNTF receptor α (CNTFRα) proteins triggering the activation of multiple intracellular signaling pathways including AKT/PI3K, MAPK/ERK and Jak/STAT pathways. At present no data are available on the localization of CNTF and CNTFRα in prostate as well as on the role of CNTF in this organ. In this study we have analyzed the localization of CNTF and CNTFRα by immunohistochemistry and we have used PWR-1E cell line as a model for normal glandular cell to investigate the role of this cytokine. Our results show that CNTF and CNTFRa are expressed in the staminal compart of the prostate and that CNTF selectively inhibits ERK pathway. In conclusion, we suggest that CNTF could be considered as key molecule to maintenance epithelium homeostasis via pERK downregulation by an autocrine mechanism. Further CNTF studies in prostate cancer could be useful to verify the potential role of this cytokine in carcinogenesis.

Endocrinology ◽  
2014 ◽  
Vol 155 (1) ◽  
pp. 98-107 ◽  
Author(s):  
Bharath K. Mani ◽  
Jen-Chieh Chuang ◽  
Lilja Kjalarsdottir ◽  
Ichiro Sakata ◽  
Angela K. Walker ◽  
...  

Ghrelin is an orexigenic hormone secreted principally from a distinct population of gastric endocrine cells. Molecular mechanisms regulating ghrelin secretion are mostly unknown. Recently, norepinephrine (NE) was shown to enhance ghrelin release by binding to β1-adrenergic receptors on ghrelin cells. Here, we use an immortalized stomach-derived ghrelin cell line to further characterize the intracellular signaling pathways involved in NE-induced ghrelin secretion, with a focus on the roles of Ca2+ and cAMP. Several voltage-gated Ca2+ channel (VGCC) family members were found by quantitative PCR to be expressed by ghrelin cells. Nifedipine, a selective L-type VGCC blocker, suppressed both basal and NE-stimulated ghrelin secretion. NE induced elevation of cytosolic Ca2+ levels both in the presence and absence of extracellular Ca2+. Ca2+-sensing synaptotagmins Syt7 and Syt9 were also highly expressed in ghrelin cell lines, suggesting that they too help mediate ghrelin secretion. Raising cAMP with the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine also stimulated ghrelin secretion, although such a cAMP-mediated effect likely does not involve protein kinase A, given the absence of a modulatory response to a highly selective protein kinase A inhibitor. However, pharmacological inhibition of another target of cAMP, exchange protein-activated by cAMP (EPAC), did attenuate both basal and NE-induced ghrelin secretion, whereas an EPAC agonist enhanced basal ghrelin secretion. We conclude that constitutive ghrelin secretion is primarily regulated by Ca2+ influx through L-type VGCCs and that NE stimulates ghrelin secretion predominantly through release of intracellular Ca2+. Furthermore, cAMP and its downstream activation of EPAC are required for the normal ghrelin secretory response to NE.


1998 ◽  
Vol 90 (1) ◽  
pp. 49
Author(s):  
S.W. Levison ◽  
P.J. Albrecht ◽  
S.N. Hudgins ◽  
M.H. Ducceschi ◽  
T.L. Wood

Blood ◽  
2007 ◽  
Vol 110 (13) ◽  
pp. 4492-4502 ◽  
Author(s):  
Eric Vachon ◽  
Raiza Martin ◽  
Vivian Kwok ◽  
Vera Cherepanov ◽  
Chung-Wai Chow ◽  
...  

Diverse receptors, including Fcγ receptors and β2 integrins (complement receptor-3 [CR3], CD11b/CD18), have been implicated in phagocytosis, but their distinct roles and interactions with other receptors in particle engulfment are not well defined. CD44, a transmembrane adhesion molecule involved in binding and metabolism of hyaluronan, may have additional functions in regulation of inflammation and phagocytosis. We have recently reported that CD44 is a fully competent phagocytic receptor that is able to trigger ingestion of large particles by macrophages. Here, we investigated the role of coreceptors and intracellular signaling pathways in modulation of CD44-mediated phagocytosis. Using biotinylated erythrocytes coated with specific antibodies (anti-CD44–coated erythrocytes [Ebabs]) as the phagocytic prey, we determined that CD44-mediated phagocytosis is reduced by 45% by a blocking CD11b antibody. Further, CD44-mediated phagocytosis was substantially (42%) reduced in CD18-null mice. Immunofluorescence microscopy revealed that CD11b is recruited to the phagocytic cup. The mechanism of integrin activation and mobilization involved activation of the GTPase Rap1. CD44-mediated phagocytosis was also sensitive to the extracellular concentration of the divalent cation Mg2+ but not Ca2+. In addition, buffering of intracellular Ca2+ did not affect CD44-mediated phagocytosis. Taken together, these data suggest that CD44 stimulation induces inside-out activation of CR3 through the GTPase Rap1.


Neuroscience ◽  
2003 ◽  
Vol 122 (1) ◽  
pp. 229-235 ◽  
Author(s):  
C Harada ◽  
T Harada ◽  
H.-M.A Quah ◽  
F Maekawa ◽  
K Yoshida ◽  
...  

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1744-1744
Author(s):  
Vineet Awasthi ◽  
Samir Mandal ◽  
Veena Papanna ◽  
L. Vijaya Mohan Rao ◽  
Usha Pendurthi

Abstract Tissue factor (TF) is a cellular receptor for clotting factor VIIa (VIIa) and the formation of TF-VIIa complexes on cell surfaces not only triggers the coagulation cascade but also transduces cell signaling via activation of protease-activated receptors (PARs), particularly PAR2. Although a number of recent studies provide valuable information on intracellular signaling pathways that are activated by TF-VIIa, the role of various cell surface components in mediating the interaction of TF-VIIa with PARs, and the subsequent signal transmittance are unknown. Unlike thrombin and trypsin, VIIa has to bind to its cellular receptor (TF) to activate PARs. The inability of TF-VIIa to effectively activate Ca2+ signaling and failure to desensitize the signaling to subsequently added trypsin suggest that the TF-VIIa is a poor activator of PAR2. Despite this, a number of studies have shown that VIIa is as effective as trypsin or PAR2 agonist peptide in activating intracellular signaling pathways and gene expression in cells expressing TF. Although the potential mechanism for this phenomenon is unknown, compartmentalization of TF, PAR2, and G-proteins in plasma membrane microdomains could facilitate a robust TF-VIIa-induced PAR2-mediated cell signaling. Although certain G-protein coupled receptors and G-proteins are known to be segregated into specialized membrane microdomains, lipid rafts and caveolae, little is known whether PARs are segregated into lipid rafts and caveolae, and how such segregation might influence their activation by TF-VIIa and the subsequent coupling to G-proteins. To obtain answers to some of these questions, in the present study, we have characterized TF and PAR2 distribution on tumor cell surfaces and investigated the role of lipid raft/caveolae in modulating the TF-VIIa signaling in tumor cells. Detergent extraction of cells followed by fractionation on sucrose gradient centrifugation showed that TF and PAR2 were distributed both in lipid rafts (low-density) and soluble fractions. Immunofluorescence confocal microscopy revealed that TF at the cell surface is localized in discrete plasma membrane microdomains, and colocalized with caveolin-1, a structural integral protein of caveolae, indicating caveolar localization of TF. Similar to TF, PAR2 also displayed significant punctuate staining and colocalization with caveloin-1. Further, a substantial fraction of TF and PAR2 was colocalized in caveolae. Disruption of lipid rafts/caveolae by ß-methyl cyclodextrin or filipin treatments reduced TF association with PAR2 in lipid rafts and caveolar fractions and impaired the TF-VIIa-induced cell signaling (PI hydrolysis and IL-8 gene expression). Additional studies showed that both mßCD and filipin treatments specifically impaired TF-VIIa cleavage of PAR2 and but had no significant effect on trypsin cleavage of PAR2. Disruption of caveolae with caveolin-1 silencing had no effect on the TF-VIIa coagulant activity but inhibited the TF-VIIa-induced cell signaling. In summary, the data presented herein demonstrate that TF localization at the cell membrane could influence different functions of TF differently. While caveolar localization of TF had no influence in propagating the procoagulant activity of TF, it is essential in supporting the TF-VIIa-induced cell signaling.


1995 ◽  
Vol 6 (2) ◽  
pp. 119-131 ◽  
Author(s):  
K.R. Purushotham ◽  
M.G. Humphreys-Beher

Tyrosine phosphorylation and the intracellular signaling processes associated with it have been the focus of intense study due to its importance in the regulation of biological processes as diverse as cell proliferation and cell differentiation. While much of what we now understand has been derived from the study of cell lines and tumor cells, the salivary glands provide a model to examine the effects of tyrosine kinases and tyrosine phosphatases in a normal differentiated tissue. This review will focus, therefore, on the role tyrosine kinases and phosphatases play in inducing the transition from stasis to active proliferation and their potential role in mediating secretory function of the salivary glands.


2017 ◽  
Vol 59 (4) ◽  
pp. R141-R154 ◽  
Author(s):  
Marika H Tesselaar ◽  
Johannes W Smit ◽  
James Nagarajah ◽  
Romana T Netea-Maier ◽  
Theo S Plantinga

While in most patients with non-medullary thyroid cancer (TC), disease remission is achieved by thyroidectomy and ablation of tumor remnants by radioactive iodide (RAI), a substantial subgroup of patients with metastatic disease present tumor lesions that have acquired RAI resistance as a result of dedifferentiation. Although oncogenic mutations inBRAF,TERTpromoter andTP53are associated with an increased propensity for induction of dedifferentiation, the role of genetic and epigenetic aberrations and their effects on important intracellular signaling pathways is not yet fully elucidated. Also immune, metabolic, stemness and microRNA pathways have emerged as important determinants of TC dedifferentiation and RAI resistance. These signaling pathways have major clinical implications since their targeting could inhibit TC progression and could enable redifferentiation to restore RAI sensitivity. In this review, we discuss the current insights into the pathological processes conferring dedifferentiation and RAI resistance in TC and elaborate on novel advances in diagnostics and therapy to improve the clinical outcome of RAI-refractory TC patients.


2002 ◽  
Vol 22 (11) ◽  
pp. 3633-3638 ◽  
Author(s):  
Markus Zumbansen ◽  
Wilhelm Stoffel

ABSTRACT Sphingomyelin is a major lipid in the bilayer of subcellular membranes of eukaryotic cells. Different sphingomyelinases catalyze the initial step in the catabolism of sphingomyelin, the hydrolysis to phosphocholine and ceramide. Sphingomyelinases have been postulated to generate ceramide as a lipophilic second messenger in intracellular signaling pathways involved in cell proliferation, differentiation, or apoptosis. To elucidate the function of the first cloned Mg2+-dependent, neutral sphingomyelinase (nSMase 1) in sphingomyelin catabolism and its potential role in signaling processes in a genetic and molecular approach, we have generated an nSMase 1-null mutant mouse line by gene targeting. The nSMase 1-deficient mice show an unconspicuous phenotype and no accumulation or changed metabolism of sphingomyelin or other lipids, despite grossly reduced nSMase activity in all organs except brain. We also addressed the recent proposal that nSMase 1 possesses lysophospholipase C activity. The unaltered metabolism of lysophosphatidylcholine or lyso-platelet-activating factor excludes the proposed role of nSMase 1 as a lysophospholipase C.


Sign in / Sign up

Export Citation Format

Share Document