scholarly journals Muscle hypertrophy and muscle strength: dependent or independent variables? A provocative review

Author(s):  
Carlos Reggiani ◽  
Stefano Schiaffino

The question whether the muscle hypertrophy induced by resistance training, hormone administration or genetic manipulation is accompanied by a proportional increase in muscle strength is still open. This review summarizes and analyses data obtained in human and rodent muscles in studies that have monitored in parallel changes in muscle size and changes in muscle force, measured in isometric contractions in vivo, in isolated muscles ex vivo (in rodents) and in single muscle fibers. Although a general positive relation exists among the two variables, a number of studies show a clear dissociation with increase of muscle size with no change or even decrease in strength and, vice versa, increase in strength without increase in size. The possible mechanisms of such dissociation, which involves neural motor control and/or cellular and molecular adaptations of muscle fibers, are briefly discussed.

Author(s):  
Carlo Reggiani ◽  
Stefano Schiaffino

The question whether the muscle hypertrophy induced by resistance training, hormone administration or genetic manipulation is accompanied by a proportional increase in muscle strength is still open. This review summarizes and analyses data obtained in human and rodent muscles in studies that have monitored in parallel changes in muscle size and changes in muscle force, measured in isometric contractions in vivo, in isolated muscles ex vivo (in rodents) and in single muscle fibers. Although a general positive relation exists among the two variables, a number of studies show a clear dissociation with increase of muscle size with no change or even decrease in strength and, vice versa, increase in strength without increase in size. The possible mechanisms of such dissociation, which involves neural motor control and/or cellular and molecular adaptations of muscle fibers, are briefly discussed.


2020 ◽  
Vol 117 (3) ◽  
pp. 1678-1688 ◽  
Author(s):  
Eleftherios Michailidis ◽  
Koen Vercauteren ◽  
Liliana Mancio-Silva ◽  
Linda Andrus ◽  
Cyprien Jahan ◽  
...  

Primary human hepatocytes (PHHs) are an essential tool for modeling drug metabolism and liver disease. However, variable plating efficiencies, short lifespan in culture, and resistance to genetic manipulation have limited their use. Here, we show that the pyrrolizidine alkaloid retrorsine improves PHH repopulation of chimeric mice on average 10-fold and rescues the ability of even poorly plateable donor hepatocytes to provide cells for subsequent ex vivo cultures. These mouse-passaged (mp) PHH cultures overcome the marked donor-to-donor variability of cryopreserved PHH and remain functional for months as demonstrated by metabolic assays and infection with hepatitis B virus and Plasmodium falciparum. mpPHH can be efficiently genetically modified in culture, mobilized, and then recultured as spheroids or retransplanted to create highly humanized mice that carry a genetically altered hepatocyte graft. Together, these advances provide flexible tools for the study of human liver disease and evaluation of hepatocyte-targeted gene therapy approaches.


2016 ◽  
Vol 311 (1) ◽  
pp. L20-L28 ◽  
Author(s):  
Emmy Manders ◽  
Peter I. Bonta ◽  
Jaap J. Kloek ◽  
Petr Symersky ◽  
Harm-Jan Bogaard ◽  
...  

Patients with pulmonary hypertension (PH) suffer from inspiratory muscle weakness. However, the pathophysiology of inspiratory muscle dysfunction in PH is unknown. We hypothesized that weakness of the diaphragm, the main inspiratory muscle, is an important contributor to inspiratory muscle dysfunction in PH patients. Our objective was to combine ex vivo diaphragm muscle fiber contractility measurements with measures of in vivo inspiratory muscle function in chronic thromboembolic pulmonary hypertension (CTEPH) patients. To assess diaphragm muscle contractility, function was studied in vivo by maximum inspiratory pressure (MIP) and ex vivo in diaphragm biopsies of the same CTEPH patients ( N = 13) obtained during pulmonary endarterectomy. Patients undergoing elective lung surgery served as controls ( N = 15). Muscle fiber cross-sectional area (CSA) was determined in cryosections and contractility in permeabilized muscle fibers. Diaphragm muscle fiber CSA was not significantly different between control and CTEPH patients in both slow-twitch and fast-twitch fibers. Maximal force-generating capacity was significantly lower in slow-twitch muscle fibers of CTEPH patients, whereas no difference was observed in fast-twitch muscle fibers. The maximal force of diaphragm muscle fibers correlated significantly with MIP. The calcium sensitivity of force generation was significantly reduced in fast-twitch muscle fibers of CTEPH patients, resulting in a ∼40% reduction of submaximal force generation. The fast skeletal troponin activator CK-2066260 (5 μM) restored submaximal force generation to levels exceeding those observed in control subjects. In conclusion, diaphragm muscle fiber contractility is hampered in CTEPH patients and contributes to the reduced function of the inspiratory muscles in CTEPH patients.


2019 ◽  
Author(s):  
Alexander S. Ham ◽  
Kathrin Chojnowska ◽  
Lionel A. Tintignac ◽  
Shuo Lin ◽  
Alexander Schmidt ◽  
...  

AbstractBackgroundThe balance between protein synthesis and degradation (proteostasis) is a determining factor for muscle size and function. Signaling via the mammalian target of rapamycin complex 1 (mTORC1) regulates proteostasis in skeletal muscle by affecting protein synthesis and autophagosomal protein degradation. Indeed, genetic inactivation of mTORC1 in developing and growing muscle causes atrophy resulting in a lethal myopathy. However, systemic dampening of mTORC1 signaling by its allosteric inhibitor rapamycin is beneficial at the organismal level and increases lifespan. Whether the beneficial effect of rapamycin comes at the expense of muscle mass and function is yet to be established.MethodsWe conditionally ablated the gene coding for the mTORC1-essential component raptor in muscle fibers of adult mice (iRAmKO). We performed detailed phenotypic and biochemical analyses of iRAmKO mice and compared them with RAmKO mice, which lack raptor in developing muscle fibers. We also used polysome profiling and proteomics to assess protein translation and associated signaling in skeletal muscle of iRAmKO mice.ResultsAnalysis at different time points reveal that, as in RAmKO mice, the proportion of oxidative fibers decreases, but slow-type fibers increase in iRAmKO mice. Nevertheless, no significant decrease in body and muscle mass, or muscle fiber area was detected up to 5 months post-raptor depletion. Similarly, ex vivo muscle force was not significantly reduced in iRAmKO mice. Despite stable muscle size and function, inducible raptor depletion significantly reduced the expression of key components of the translation machinery and overall translation rates.ConclusionsRaptor depletion and hence complete inhibition of mTORC1 signaling in fully-grown muscle leads to metabolic and morphological changes without inducing muscle atrophy even after 5 months. Together, our data indicate that maintenance of muscle size does not require mTORC1 signaling, suggesting that rapamycin treatment is unlikely to negatively affect muscle mass and function.


2013 ◽  
Vol 114 (1) ◽  
pp. 81-89 ◽  
Author(s):  
Tommy R. Lundberg ◽  
Rodrigo Fernandez-Gonzalo ◽  
Thomas Gustafsson ◽  
Per A. Tesch

This study tested the hypothesis that chronic aerobic and resistance exercise (AE+RE) would elicit greater muscle hypertrophy than resistance exercise only (RE). Ten men (25 ± 4 yr) performed 5 wk unilateral knee extensor AE+RE. The opposing limb was subjected to RE. AE completed 6 hr prior to RE consisted of ∼45 min one-legged cycle ergometry. RE comprised 4 × 7 maximal concentric-eccentric knee extensions. Various indexes of in vivo knee extensor function were measured before and after training. Magnetic resonance imaging (MRI) assessed m. quadricep femoris (QF) cross-sectional area (CSA), volume, and signal intensity (SI). Biopsies obtained from m. vastus lateralis determined fiber CSA, enzyme levels, and gene expression of myostatin, atrogin-1, MuRF-1, PGC-1α, and VEGF. Increases ( P < 0.05) in isometric strength and peak power, respectively, were comparable in AE+RE (9 and 29%) and RE (11 and 24%). AE+RE showed greater increase (14%; P < 0.05) in QF volume than RE (8%). Muscle fiber CSA increased 17% after AE+RE ( P < 0.05) and 9% after RE ( P > 0.05). QF SI increased (12%; P < 0.05) after AE+RE, but not RE. Neither AE+RE nor RE showed altered mRNA levels. Citrate synthase activity increased ( P < 0.05) after AE+RE. The results suggest that the increased aerobic capacity shown with AE+RE was accompanied by a more robust increase in muscle size compared with RE. Although this response was not carried over to greater improvement in muscle function, it remains that intense AE can be executed prior to RE without compromising performance outcome.


2004 ◽  
Vol 97 (5) ◽  
pp. 1954-1961 ◽  
Author(s):  
Charlotte Suetta ◽  
Per Aagaard ◽  
Anna Rosted ◽  
Ane K. Jakobsen ◽  
Benn Duus ◽  
...  

The ability to develop muscle force rapidly may be a very important factor to prevent a fall and to perform other tasks of daily life. However, information is still lacking on the range of training-induced neuromuscular adaptations in elderly humans recovering from a period of disuse. Therefore, the present study examined the effect of three types of training regimes after unilateral prolonged disuse and subsequent hip-replacement surgery on maximal muscle strength, rapid muscle force [rate of force development (RFD)], muscle activation, and muscle size. Thirty-six subjects (60–86 yr) were randomized to a 12-wk rehabilitation program consisting of either 1) strength training (3 times/wk for 12 wk), 2) electrical muscle stimulation (1 h/day for 12 wk), or 3) standard rehabilitation (1 h/day for 12 wk). The nonoperated side did not receive any intervention and thereby served as a within-subject control. Thirty subjects completed the trial. In the strength-training group, significant increases were observed in maximal isometric muscle strength (24%, P < 0.01), contractile RFD (26–45%, P < 0.05), and contractile impulse (27–32%, P < 0.05). No significant changes were seen in the two other training groups or in the nontrained legs of all three groups. Mean electromyogram signal amplitude of vastus lateralis was larger in the strength-training than in the standard-rehabilitation group at 5 and 12 wk ( P < 0.05). In contrast to traditional physiotherapy and electrical stimulation, strength training increased muscle mass, maximal isometric strength, RFD, and muscle activation in elderly men and women recovering from long-term muscle disuse and subsequent hip surgery. The improvement in both muscle mass and neural function is likely to have important functional implications for elderly individuals.


2008 ◽  
Vol 105 (5) ◽  
pp. 1454-1461 ◽  
Author(s):  
L. Holm ◽  
S. Reitelseder ◽  
T. G. Pedersen ◽  
S. Doessing ◽  
S. G. Petersen ◽  
...  

Muscle mass accretion is accomplished by heavy-load resistance training. The effect of light-load resistance exercise has been far more sparsely investigated with regard to potential effect on muscle size and contractile strength. We applied a resistance exercise protocol in which the same individual trained one leg at 70% of one-repetition maximum (1RM) (heavy load, HL) while training the other leg at 15.5% 1RM (light load, LL). Eleven sedentary men (age 25 ± 1 yr) trained for 12 wk at three times/week. Before and after the intervention muscle hypertrophy was determined by magnetic resonance imaging, muscle biopsies were obtained bilaterally from vastus lateralis for determination of myosin heavy chain (MHC) composition, and maximal muscle strength was assessed by 1RM testing and in an isokinetic dynamometer at 60°/s. Quadriceps muscle cross-sectional area increased ( P < 0.05) 8 ± 1% and 3 ± 1% in HL and LL legs, respectively, with a greater gain in HL than LL ( P < 0.05). Likewise, 1RM strength increased ( P < 0.001) in both legs (HL: 36 ± 5%, LL: 19 ± 2%), albeit more so with HL ( P < 0.01). Isokinetic 60°/s muscle strength improved by 13 ± 5% ( P < 0.05) in HL but remained unchanged in LL (4 ± 5%, not significant). Finally, MHC IIX protein expression was decreased with HL but not LL, despite identical total workload in HL and LL. Our main finding was that LL resistance training was sufficient to induce a small but significant muscle hypertrophy in healthy young men. However, LL resistance training was inferior to HL training in evoking adaptive changes in muscle size and contractile strength and was insufficient to induce changes in MHC composition.


2020 ◽  
Author(s):  
A. F. Mead ◽  
G. G. Kennedy ◽  
B. M. Palmer ◽  
A. M. Ebert ◽  
D. M. Warshaw

AbstractZebrafish (Danio rerio) swim within days of fertilization, powered by muscles of the axial myotomes. Forces generated by these muscles can be measured rapidly in whole, intact larval tails by adapting protocols developed for ex vivo muscle mechanics. But it is not known how well these measurements reflect the function of the underlying muscle fibers and sarcomeres. Here we consider the anatomy of the 5-day-old, wild-type larval tail, and implement technical modifications to measuring muscle physiology in intact tails. Specifically, we quantify fundamental relationships between force, length, and shortening velocity, and capture the extreme contractile speeds required to swim with tail-beat frequencies of 80-100 Hz. Therefore, we analyze 1000 frames/second movies to track the movement of structures, visible in the transparent tail, which correlate with sarcomere length. We also characterize the passive viscoelastic properties of the preparation to isolate forces contributed by non-muscle structures within the tail. Myotomal muscles generate more than 95% of their maximum isometric stress (76±3 mN/mm2) over the range of muscle lengths used in vivo. They have rapid twitch kinetics (full width at half-maximum stress: 11±1 msec) and a high twitch to tetanus ratio (0.91±0.05), indicating adaptations for fast excitation-contraction coupling. Although contractile stress is relatively low, myotomal muscles develop high net power (134±20 W/kg at 80 Hz) in cyclical work loop experiments designed to simulate the in vivo dynamics of muscle fibers during swimming. When shortening at a constant speed of 7±1 muscle lengths/second, muscles develop 86±2% of isometric stress, while peak instantaneous power during 100Hz work loops occurs at 18±2 muscle lengths/second. These approaches can improve the usefulness of zebrafish as a model system for muscle research by providing a rapid and sensitive functional readout for experimental interventions.Statement of significanceThe zebrafish (Danio rerio) may prove a uniquely efficient model system for characterizing vertebrate muscle physiology. Transparent, drug-permeable larva – each, in essence, a fully functional muscle – can be generated rapidly, inexpensively, and in large numbers. Critically, the zebrafish genome contains homologs of major muscle genes and is highly amenable to manipulation. To reach its potential, reliable (and preferably rapid) means are needed to observe the effects of experimental interventions on larval muscle function. In the present study we show how mechanical measurements made on whole, intact larval tails can provide a readout of fundamental muscle-mechanical properties. Additionally, we show that these muscles are among the fastest ever measured, and therefore worthy of study in their own right.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 22-23
Author(s):  
Sydney Felker ◽  
Archana Shrestha ◽  
Punam Malik

Gene therapy/editing of CD34+ HSPC ex vivo, followed by their transplantation, can cure a variety of hematologic diseases. However, a substantial loss of HSPC occurs from collection to transplant. Losses occur during processing for HSPC enrichment, ex vivo genetic manipulation and culture, formulation, and testing prior to transplant. Further, HSPC are lost to peripheral organs during homing when delivered intravenously (IV), reducing the effective gm HSPC dose; a loss compounded by the lack of helper cells that aid in the homing and engraftment process which are removed during enrichment. Direct BM delivery of gm HSPC can overcome some of these limitations. This has been tried previously, with non-enriched whole cord blood (CB) and non-gm HSPC, with conflicting results. We hypothesized that BM delivery of a limited dose of gm adult HSPC would improve long-term repopulation over that of IV delivery by bypassing HSPC loss during homing. Using bioluminescent imaging, we determined that CB HSPC transduced with a luciferase lentiviral vector (LV) delivered by intra-femoral (IF) injection localized to the injected femur, validating our injection method. Next, we delivered mobilized peripheral blood (MPB) HSPC transduced with a GFP LV into irradiated NOD.LtSz-scid IL2rg -/- (NSG) mice via IV or IF injection in limiting dilution. Total human engraftment (hCD45+ cells), transduced human engraftment (hCD45+GFP+ cells), and multi-lineage engraftment were measured in the BM at 3- and 6-months post-transplant. HSPC gave rise to a bi-lineage (B-myeloid) graft at 3 months, suggesting hematopoietic progenitor cell (HPC) engraftment, and a multi-lineage graft (hCD33+, hCD19+, hCD3+, and hCD34+ cells) at 6 months, suggesting engraftment from a long-term repopulating cell or hematopoietic stem cell (HSC). At 3 months, IF delivery of HSPC resulted in significantly higher total and transduced human cell engraftment, measured in the non-injected femur (Table 1). The engraftment was bi-lineage. At 6 months, IF delivery of HSPC no longer significantly increased engraftment over IV delivery (Table 1). However, a multi-lineage graft was present, indicating full hematopoietic repopulation. There was no significant difference in the lineage output between either delivery method at 3 or 6 months. These data suggest that HPC homed and engrafted more efficiently than HSC, when delivered IF. Alternatively, IF delivery altered the BM microenvironment, allowing preferential homing of HPC. However, CD34- cells injected IF, to simulate pressure and passage of cells through the BM with IF delivery, followed by IV delivery of CD34+ cells (sham IF with IV HSPC delivery) resulted in similar homing patterns to CD34+ cells delivered IV (p=0.1, Figure 1A), suggesting that differences between IV and IF delivery were likely due to cell-intrinsic rather than cell-extrinsic differences between HPC and HSC. To study the mechanism of preferential engraftment of HPC over HSC with IF delivery, we analyzed expression of the major homing receptors CXCR4 and VLA-4 on HPC and HSC. CXCR4 (Figure 1B) and VLA-4 were both expressed at significantly higher levels on HPC than on HSC (CXCR4 p&lt;0.01; VLA-4 p&lt;0.05) and their expression increased with increasing culture time and with HSPC cycling. However, VLA-4 expression was significantly increased in GFP+ (MFI 65313 ± 4750) compared to GFP- (MFI 48969 ± 2099; p&lt;0.01) HSPC. CXCR4 expression was similar in both GFP+ (MFI 4261 ± 189) and GFP- (MFI 5245 ± 1186) HSPC, mimicking the in vivo engraftment pattern of GFP+ and GFP- cells, suggesting that CXCR4 may be the molecule responsible for enhancing HPC homing and engraftment with BM delivery. An initial experiment shows that when we remove the high CXCR4 expressing CD34+38+ HPC and deliver HSC-enriched CD34+38- cells IV or IF, IF delivery results in higher long-term engraftment (additional experiments ongoing, Figure 1C, D). These data support the hypothesis that cell-intrinsic differences in the homing behavior of HSC and HPC is likely due to their differential expression of CXCR4. Studies underway on blockade of CXCR4 or VLA-4 on gm HPC and/or gm HSC followed by their IF or IV delivery will be presented. Overall, we show IV delivery of gm HSPC is comparable to BM delivery. However, as HSC-enriched cells become clinically available for genetic therapies, BM delivery of enriched gm HSC may result in superior engraftment. Disclosures Malik: Aruvant Sciences, Forma Therapeutics, Inc.: Consultancy; Aruvant Sciences, CSL Behring: Patents & Royalties.


Sign in / Sign up

Export Citation Format

Share Document