scholarly journals Spatial variation of picoplankton communities along a cascade reservoir system in Patagonia, Argentina

Author(s):  
M. Carolina Bernal ◽  
Lunhui Lu ◽  
Carmen Sabio y García ◽  
María Laura Sánchez ◽  
M. Solange Vera ◽  
...  

In this study we explored how picoplankton community structure and diversity varied along three cascade oligo-mesotrophic reservoirs of the Limay River (Patagonia, Argentina): Alicura, Piedra del Águila and Ramos Mexía. We analyzed the spatial changes, covering lotic and lentic stretches along a gradient of 262 km from Andes to steppe, and we also sampled the main affluent of the Limay River (Collon Cura). In all sampling sites the main limnological variables were measured, and the picoplankton abundance (autotrophic and heterotrophic) was analyzed by flow cytometry. The bacterial biodiversity was assessed using high throughput sequencing Illumina MiSeq. We expected an increase in the trophic state along this series of cascade reservoirs, which would determine spatial differences in the structure of the picoplankton communities. We also hypothesized that the lotic and lentic conditions along the system would influence the bacterial composition. The results showed a slight increase in trophic state together with an increase in overall picoplankton abundance downstream, towards Ramos Mexía Reservoir. Picocyanobacteria were represented by phycoerythrin-rich cells all along the system, in accordance to the pattern described for oligotrophic aquatic ecosystems. Multivariate analyses based on bacterial OTU composition and environmental variables showed a spatial ordination of sites following the trend of increasing trophic state downstream. Molecular analyses of bacterial OTU diversity also showed an increase in richness and a decrease in evenness at the lotic stretches, and the opposite pattern in the reservoirs, suggesting that water retention time may play a role in structuring the community composition.

2021 ◽  
Vol 9 (3) ◽  
pp. 659
Author(s):  
Elias Asimakis ◽  
Panagiota Stathopoulou ◽  
Apostolis Sapounas ◽  
Kanjana Khaeso ◽  
Costas Batargias ◽  
...  

Various factors, including the insect host, diet, and surrounding ecosystem can shape the structure of the bacterial communities of insects. We have employed next generation, high-throughput sequencing of the 16S rRNA to characterize the bacteriome of wild Zeugodacus (Bactrocera) cucurbitae (Coquillett) flies from three regions of Bangladesh. The tested populations developed distinct bacterial communities with differences in bacterial composition, suggesting that geography has an impact on the fly bacteriome. The dominant bacteria belonged to the families Enterobacteriaceae, Dysgomonadaceae and Orbaceae, with the genera Dysgonomonas, Orbus and Citrobacter showing the highest relative abundance across populations. Network analysis indicated variable interactions between operational taxonomic units (OTUs), with cases of mutual exclusion and copresence. Certain bacterial genera with high relative abundance were also characterized by a high degree of interactions. Interestingly, genera with a low relative abundance like Shimwellia, Gilliamella, and Chishuiella were among those that showed abundant interactions, suggesting that they are also important components of the bacterial community. Such knowledge could help us identify ideal wild populations for domestication in the context of the sterile insect technique or similar biotechnological methods. Further characterization of this bacterial diversity with transcriptomic and metabolic approaches, could also reveal their specific role in Z. cucurbitae physiology.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 745
Author(s):  
Michelle Martin de Bustamante ◽  
Diego Gomez ◽  
Jennifer MacNicol ◽  
Ralph Hamor ◽  
Caryn Plummer

The objective of this study was to describe and compare the fecal bacterial microbiota of horses with equine recurrent uveitis (ERU) and healthy horses using next-generation sequencing techniques. Fecal samples were collected from 15 client-owned horses previously diagnosed with ERU on complete ophthalmic examination. For each fecal sample obtained from a horse with ERU, a sample was collected from an environmentally matched healthy control with no evidence of ocular disease. The Illumina MiSeq sequencer was used for high-throughput sequencing of the V4 region of the 16S rRNA gene. The relative abundance of predominant taxa, and alpha and beta diversity indices were calculated and compared between groups. The phyla Firmicutes, Bacteroidetes, Verrucomicrobia, and Proteobacteria predominated in both ERU and control horses, accounting for greater than 60% of sequences. Based on linear discriminant analysis effect size (LEfSe), no taxa were found to be enriched in either group. No significant differences were observed in alpha and beta diversity indices between groups (p > 0.05 for all tests). Equine recurrent uveitis is not associated with alteration of the gastrointestinal bacterial microbiota when compared with healthy controls.


2013 ◽  
Vol 61 (2) ◽  
Author(s):  
Liseth Pérez ◽  
Julia Lorenschat ◽  
Julieta Massaferro ◽  
Christine Pailles ◽  
Florence Sylvestre ◽  
...  

2020 ◽  
Vol 70 (1) ◽  
Author(s):  
Qiancheng Zuo ◽  
Yongguang Huang ◽  
MinGuo

Abstract Purpose High-temperature Daqu is a traditional fermentation starter that is used for Chinese Maotai-flavor Baijiu production. Although the bacteria in high-temperature Daqu are known to be responsible for developing the quality and flavor of Baijiu during the fermentation process, there is little information on the properties of the bacteria during the fermentation of high-temperature Daqu, especially machine-made high-temperature Daqu. This has limited the development of the Maotai-flavor Baijiu industry, particularly with regard to the mechanized production of Maotai-flavor Baijiu. Methods Illumina MiSeq high-throughput sequencing was applied to study bacterial compositions during the fermentation of handmade and machine-made high temperatures. Results The results show that bacterial diversity in machine-made Daqu was similar but higher than that in handmade Daqu at the end of fermentation, and there was no significant difference between the methods with regard to the dominant genera and their dynamic changes during fermentation. Rhizobium, Bacillus, Thermoactinomyces, Weissella, Lactobacillus, and Saccharopolyspora were the dominant genera during the fermentation of both Daqus, although the relative abundance of these dominant genera differed between the two methods. Interestingly, the machine-made Daqu contained a higher relative abundance of Bacillus than handmade Daqu at all fermentation times. Bacillus is the most important functional bacteria in the fermentation of Maotai-flavor Baijiu, suggesting that mechanical-molding methods could be applied to industrial Maotai-flavor Daqu production. Conclusion These results suggest that mechanical-molding methods could be applied to industrial Maotai-flavor Daqu production, which could be helpful for industrial Maotai-flavor Baijiu production and the development of fermentation technology.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Frédéric Rimet ◽  
Evgenuy Gusev ◽  
Maria Kahlert ◽  
Martyn G. Kelly ◽  
Maxim Kulikovskiy ◽  
...  

Abstract Diatoms (Bacillariophyta) are ubiquitous microalgae which produce a siliceous exoskeleton and which make a major contribution to the productivity of oceans and freshwaters. They display a huge diversity, which makes them excellent ecological indicators of aquatic ecosystems. Usually, diatoms are identified using characteristics of their exoskeleton morphology. DNA-barcoding is an alternative to this and the use of High-Throughput-Sequencing enables the rapid analysis of many environmental samples at a lower cost than analyses under microscope. However, to identify environmental sequences correctly, an expertly curated reference library is needed. Several curated libraries for protists exists; none, however are dedicated to diatoms. Diat.barcode is an open-access library dedicated to diatoms which has been maintained since 2012. Data come from two sources (1) the NCBI nucleotide database and (2) unpublished sequencing data of culture collections. Since 2017, several experts have collaborated to curate this library for rbcL, a chloroplast marker suitable for species-level identification of diatoms. For the latest version of the database (version 7), 605 of the 3482 taxonomical names originally assigned by the authors of the rbcL sequences were modified after curation. The database is accessible at https://www6.inra.fr/carrtel-collection_eng/Barcoding-database.


2019 ◽  
Vol 110 (3) ◽  
pp. 309-320
Author(s):  
Chen Lin ◽  
Zhou Wei ◽  
Zhou Yi ◽  
Tan Tingting ◽  
Du Huamao ◽  
...  

AbstractNanosilver is an environment-friendly, harmless alternative of traditional disinfectants which can be potentially applied in the sericulture industry. However, the effects of nanosilver on the intestinal bacterial community of the silkworms (Bombyx mori L.) are unclear. In this study, Illumina MiSeq high-throughput sequencing technology was used to assess the intestinal bacterial community in both male and female silkworms while treated with different concentrations of nanosilver. We found that nanosilver significantly influenced the composition of silkworm intestinal bacterial community on the different taxonomic levels. Most conspicuously, the abundance of Firmicutes was increased by the treatment of 20 mg L−1 nanosilver but decreased by that of 100 mg L−1 nanosilver at the phylum level. The same trend was observed in Bacilli at the class level and in Enterococcus at the genus level. In some extreme cases, application of nanosilver eliminated the bacterium, e.g., Brevibacillus, but increased the population of several other bacteria in the host intestine, such as Blautia, Terrisporobacter, Faecalibacterium, and some bacteria could only be found in nanosilver treatment groups, e.g., Dialister. In addition, although nanosilver generally showed negative effects on the cocooning rate in a dose-dependent manner, we found that 20 mg L−1 nanosilver treatment significantly increased the body weight of silkworms and did not show negative effects on the survival rate. These results indicated that the intestinal bacteria community of silkworm larvae was significantly changed after nanosilver treatment which might consequently influence host growth and development.


2015 ◽  
Vol 105 (6) ◽  
pp. 717-727 ◽  
Author(s):  
G.-J. Brandon-Mong ◽  
H.-M. Gan ◽  
K.-W. Sing ◽  
P.-S. Lee ◽  
P.-E. Lim ◽  
...  

AbstractMetabarcoding, the coupling of DNA-based species identification and high-throughput sequencing, offers enormous promise for arthropod biodiversity studies but factors such as cost, speed and ease-of-use of bioinformatic pipelines, crucial for making the leapt from demonstration studies to a real-world application, have not yet been adequately addressed. Here, four published and one newly designed primer sets were tested across a diverse set of 80 arthropod species, representing 11 orders, to establish optimal protocols for Illumina-based metabarcoding of tropical Malaise trap samples. Two primer sets which showed the highest amplification success with individual specimen polymerase chain reaction (PCR, 98%) were used for bulk PCR and Illumina MiSeq sequencing. The sequencing outputs were subjected to both manual and simple metagenomics quality control and filtering pipelines. We obtained acceptable detection rates after bulk PCR and high-throughput sequencing (80–90% of input species) but analyses were complicated by putative heteroplasmic sequences and contamination. The manual pipeline produced similar or better outputs to the simple metagenomics pipeline (1.4 compared with 0.5 expected:unexpected Operational Taxonomic Units). Our study suggests that metabarcoding is slowly becoming as cheap, fast and easy as conventional DNA barcoding, and that Malaise trap metabarcoding may soon fulfill its potential, providing a thermometer for biodiversity.


Pathogens ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 358
Author(s):  
Pamela Aravena ◽  
Rodrigo Pulgar ◽  
Javiera Ortiz-Severín ◽  
Felipe Maza ◽  
Alexis Gaete ◽  
...  

Piscirickettsia salmons, the causative agent of piscirickettsiosis, is genetically divided into two genomic groups, named after the reference strains as LF-89-like or EM-90-like. Phenotypic differences have been detected between the P. salmonis genogroups, including antibiotic susceptibilities, host specificities and pathogenicity. In this study, we aimed to develop a rapid, sensitive and cost-effective assay for the differentiation of the P. salmonis genogroups. Using an in silico analysis of the P. salmonis 16S rDNA digestion patterns, we have designed a genogroup-specific assay based on PCR-restriction fragment length polymorphism (RFLP). An experimental validation was carried out by comparing the restriction patterns of 13 P. salmonis strains and 57 field samples obtained from the tissues of dead or moribund fish. When the bacterial composition of a set of field samples, for which we detected mixtures of bacterial DNA, was analyzed by a high-throughput sequencing of the 16S rRNA gene amplicons, a diversity of taxa could be identified, including pathogenic and commensal bacteria. Despite the presence of mixtures of bacterial DNA, the characteristic digestion pattern of the P. salmonis genogroups could be detected in the field samples without the need of a microbiological culture and bacterial isolation.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Stinus Lindgreen ◽  
Karen L. Adair ◽  
Paul P. Gardner

Abstract Metagenome studies are becoming increasingly widespread, yielding important insights into microbial communities covering diverse environments from terrestrial and aquatic ecosystems to human skin and gut. With the advent of high-throughput sequencing platforms, the use of large scale shotgun sequencing approaches is now commonplace. However, a thorough independent benchmark comparing state-of-the-art metagenome analysis tools is lacking. Here, we present a benchmark where the most widely used tools are tested on complex, realistic data sets. Our results clearly show that the most widely used tools are not necessarily the most accurate, that the most accurate tool is not necessarily the most time consuming and that there is a high degree of variability between available tools. These findings are important as the conclusions of any metagenomics study are affected by errors in the predicted community composition and functional capacity. Data sets and results are freely available from http://www.ucbioinformatics.org/metabenchmark.html


Sign in / Sign up

Export Citation Format

Share Document