scholarly journals Occurrence, Distribution and Biological variability of Zucchini Yellow Mosaic Virus in cucurbits of Khuzestan province, South west of Iran

2011 ◽  
Vol 2 (1) ◽  
pp. 6
Author(s):  
Somayeh Safara ◽  
Jamshid Hayati ◽  
Mohammad Roayaei Ardakani ◽  
Mina Kohi Habibi

ZYMV is one of the most important plant viruses that cause economical damage in cucurbits. The symptoms of ZYMV in different cucurbits include stunting, yellowing, mottling, severe mosaic, leaf and fruit deformation, blistering and shoe string. Investigation on occurrence of this virus, in Khuzestan province was carried out in November 2009, April and May 2010 by collecting cucurbits samples from different cucurbits fields. After DAS-ELISA test, ZYMV was maintained in squash. Then total RNA were extracted and were tested by RT-PCR. Using RT-PCR, fragments belonging to N-terminal of coat protein and C-terminal of nuclear inclusion bodies were replicated. PCR product for investigation of replication was loaded in 1% agarose gel. From seven regions in Khuzestan, 175 leaf samples showing different symptoms (yellowing, mosaic, deformation and blistering) were collected. Seventy one samples out of total samples (175 samples) showed ZYMV infection. Occurrence of Zucchini Yellow Mosaic Virus in Khuzestan province was confirmed, using serological and RT-PCR tests. Infection of ZYMV in Khuzestan province (40.5%) is higher than the average of Iran’s infection (38%). This article is first report of occurrence ZYMV in different regions of Khuzestan province except Dezful.

Plant Disease ◽  
2005 ◽  
Vol 89 (5) ◽  
pp. 530-530 ◽  
Author(s):  
Y.-M. Liao ◽  
X.-J. Gan ◽  
B. Chen ◽  
J.-H. Cai

Luohanguo, Siraitia grosvenorii (Swingle) C. Jeffrey, is a perennial cucurbitaceous plant that is an economically important medicinal and sweetener crop in Guangxi province, China. Surveys conducted during the summer to fall seasons of 2003-2004 in northern Guangxi showed symptoms typical of a viral disease, including leaf mottling, mosaic, vein clearing, curling, and shoestring-like distortion in the field. Mechanical inoculation of sap from leaves of symptomatic plants collected from the surveyed areas caused similar symptoms on tissue culture-derived healthy Luohanguo plants. Two sequences of 0.7 and 1.6 kb with 88 and 97% identity to Papaya ringspot virus (PRSV) and Zucchini yellow mosaic virus (ZYMV) were amplified using reverse transcription-polymerase chain reaction (RT-PCR) with purified flexuous viral particles or total RNA extracted from the symptomatic Luohanguo leaves as templates with conserved degenerate potyvirus primers (1). To confirm the results, primers specific for PRSV (PP1/PP2, genome coordinates 4064-4083/5087-5069, GenBank Accession No X97251) and ZYMV (ZP1/ZP2, genome coordinates 5540-5557/7937-7920, GenBank Accession No L31350) were used to perform RT-PCR from the same RNA templates. The expected 1.0- and 2.3-kb fragments were amplified and they were 90 and 95% identical to PRSV and ZYMV in sequence, respectively. Watermelon mosaic virus was not detected. To our knowledge, this is the first report of the occurrence of PRSV and ZYMV in Luohanguo. Reference: (1) A. Gibbs et al. J. Virol. Methods 63:9, 1997.


Plant Disease ◽  
2007 ◽  
Vol 91 (5) ◽  
pp. 639-639 ◽  
Author(s):  
H. Pospieszny ◽  
B. Hasiów ◽  
N. Borodynko

Zucchini yellow mosaic virus (ZYMV) is a member of the Potyvirus genus in the Potyviridae family, the largest group of plant viruses. Different isolates of this virus have been found in infected cucurbits throughout the world, including localities in Europe, America, Australia, and Asia. In August 2005, mosaic and yellowing of leaves, as well as yellow spots on green fruits, were observed on zucchini (Cucurbita pepo cv. giromontiina) growing in commercial fields in the Kujawsko-Pomorskie Region of Poland. Flexuous virus particles (~750 nm long), typical of potyviruses, were observed in leaf-dip preparations from symptomatic zucchini plants. The virus in the sap from symptomatic plants was mechanically transmitted and systemic infections were produced on Citrullus lanatus, Cucumis melo, Cucumis sativus, C. pepo cvs. giromontiina and patissoniana, C. maxima, and Nicotiana benthamiana. Severe symptoms such as severe malformation of leaves and stunting of plants were observed on zucchini plants (cv. giromontiina) infected mechanically with the virus and grown in the greenhouse. Double-antibody sandwich (DAS)-ELISA using an anti-ZYMV polyclonal antiserum (AS-0234; DSMZ, Braunschweig, Germany) identified the presence of ZYMV in mechanically infected C. pepo cv. giromontiina and N. benthamiana plants. Subsequently, a reverse transcription (RT)-PCR using a universal primer, Sprimer, designed from the consensus sequences that code for the conserved sequence GNNSGQP in the NIb region of Potyviridae family members and the M4 primer was performed (1). The 1740-bp PCR fragments were cloned into the pGEM-T vector (Promega, Madison, WI) and three randomly selected clones were sequenced on an ABI automatic sequencer. An 837-bp sequence representing the full length coat protein gene (GenBank Accession No. EF178505) was compared with homologous sequences from other ZYMV isolates using BioEdit and Mega 3.1 softwares. Genetic distances were calculated by Kimura's two-parameter method (2). Surprisingly, the Polish ZYMV isolate (ZYMV-Zug) was more closely related to ZYMV isolates from Asia than those from Europe. Pairwise comparisons of ZYMV-Zug with several other European ZYMV isolates (GenBank Accession Nos. DQ645729, AJ420020, AJ459956, AJ420014, AJ420019, DQ124239, and AJ420018) indicated an 81 to 82% nucleotide and 91 to 92% amino acid identity, while there was a 94% nucleotide and 99% amino acid identity with the Shanxi (GenBank Accession No. AY074808) and Shandong isolates (GenBank Accession No. AF513552) from China. References: (1) J. Chen et al. Arch. Virol. 146:757, 2001. (2) S. Kumar et al. Brie. Bioinform. 5:150, 2004.


HortScience ◽  
2021 ◽  
pp. 1-7
Author(s):  
Asma Mohammed Saeed Al-Kubati ◽  
Baoshan Kang ◽  
Liming Liu ◽  
Aqleem Abbas ◽  
Qinsheng Gu

Zucchini yellow mosaic virus (ZYMV) causes serious damage to cucurbit crops worldwide and can be spread by aphids, by mechanical injury, and in seeds. With the popularization of cucurbit grafting, the use of susceptible rootstock has increased the risk of ZYMV infection in cucurbit crops. In China, the bottle gourd (Lagenaria siceraria) is a widely used rootstock in grafted watermelon production. However, few resistant bottle gourds are available commercially. This study developed bottle gourd lines resistant to ZYMV using ethyl methanesulfonate (EMS) mutagenesis. A new mutated bottle gourd population (M1) was generated by treating seeds with EMS. Diverse phenotypes were observed in the seedlings, flowers, and fruit of M2 plants, some of which are of potential commercial interest, such as dwarfing and different fruit shapes. Based on the M2 phenotypes, 106 M3 lines were selected and screened for resistance to ZYMV by mechanical inoculation and agroinfiltration. Nine M3 lines were resistant to ZYMV during three tests. One inbred M4 line (177-8) was developed and showed stable resistance and no virus when tested using a double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) and polymerase chain reaction. These resistant lines are promising materials for developing watermelon rootstock and exploring resistance genes as new ZYMV-resistant resources. EMS induction could be a practical strategy for creating resistant cucurbit crops.


Plant Disease ◽  
2014 ◽  
Vol 98 (5) ◽  
pp. 702-702 ◽  
Author(s):  
I. Malandraki ◽  
N. Vassilakos ◽  
C. Xanthis ◽  
G. Kontosfiris ◽  
N. I. Katis ◽  
...  

In the summer of 2012, zucchini (Cucurbita pepo L.) plants of F1 hybrid Rigas showing very severe malformation and blisters in leaves and fruit were observed in the prefectures of Ilia and Messinia, Peloponnese, southwestern Greece. Over 100 samples were collected and only a few were found by double antibody sandwich (DAS)-ELISA to be singly or mixed infected with the commonly encountered Cucumber mosaic virus (CMV, genus Cucumovirus), Zucchini yellow mosaic virus (ZYMV, genus Potyvirus), and Watermelon mosaic virus (WMV, genus Potyvirus), to which Rigas is known to be tolerant. All affected plants were also tested by DAS-ELISA and RT-PCR (2) for the presence of Moroccan watermelon mosaic virus (MWMV; genus Potyvirus), a virus not previously reported in Greece, and were consistently found positive by both methods. Sap from plants in which MWMV was solely detected was used to mechanically inoculate Chenopodium quinoa Willd. and cucurbit species (zucchini, cucumber, melon, and watermelon). C. quinoa produced chlorotic local lesions, while cucurbits showed very severe mosaic and malformation of leaves. Zucchini plants of F1 hybrids Rigas, Golden (tolerant to WMV and ZYMV), and Elion (not exhibiting any tolerance) grown in a screenhouse produced equivalent severe symptoms on leaves and fruits. Furthermore, transmission experiments in a non-persistent manner using a clone of Myzus persicae Sulz. and zucchini plants of F1 hybrid Boreas as donor and test plants were carried out. Ten plants were used in each experiment (one aphid/plant) and this was repeated five times (50 plants in total). The transmission rate was high ranging from 75 to 90%. RT-PCR obtained amplicons of 627 bp were subjected to direct sequencing (GenBank Accession No KF772944), which revealed 99% sequence identity to the corresponding region of a MWMV Tunisian isolate (EF579955). In 2013, in addition to zucchini plants found MWMV positive, watermelon (Citrullus lanatus Thunb.) plants from the same region of Peloponnese showing leaf malformation and mosaic symptoms were found MWMV positive (4/30) by DAS-ELISA and RT-PCR, revealing the virus establishment and further spread. In the Mediterranean basin, the virus has already been reported in Morocco, Italy, France, Spain, Tunisia, and Algeria, where it has emerged recently from a common source, has quickly become established through rapid dissemination and is considered as an important emerging threat (4). Isolates from these countries, including the present one from Greece, are very closely molecularly related to each other, contrary to isolates from sub-Saharan Africa (South Africa, Sudan, Congo, Zimbabwe, Niger, Cameroon, Nigeria) that are much more divergent (1,3). To our knowledge, this is the first report of MWMV in Greece. References: (1) H. Lecoq et al. Plant Dis. 85:547, 2001. (2) H. Lecoq et al. New Dis. Rep. 16:19, 2007. (3) A. T. Owolabi et al. Int. J. Virol. 8:258, 2012. (4) S. Yakoubi et al. Arch. Virol. 153:775, 2008.


2007 ◽  
Vol 97 (3) ◽  
pp. 287-296 ◽  
Author(s):  
Shih-Shun Lin ◽  
Hui-Wen Wu ◽  
Fuh-Jyh Jan ◽  
Roger F. Hou ◽  
Shyi-Dong Yeh

A nonpathogenic mild strain is essential for control of plant viruses by cross protection. Three amino acid changes, Arg180→Ile180 (GA mutation), Phe205→Leu205 (GB mutation), and Glu396→Asn396 (GC mutation), of the conserved motifs of the helper component-protease (HC-Pro) of a severe strain TW-TN3 of Zucchini yellow mosaic virus (ZYMV), a member of the genus Potyvirus, were generated from an infectious cDNA clone that carried a green fluorescent protein reporter. The infectivity of individual mutants containing single, double, or triple mutations was assayed on local and systemic hosts. On Chenopodium quinoa plants, the GB mutant induced necrotic lesions; the GA, GC, and GBC mutants induced chlorotic spots; and the GAB and GAC mutants induced local infection only visualized by fluorescence microscopy. On squash plants, the GA, GB, GC, and GBC mutants caused milder mosaic; the GAC mutant induced slight leaf mottling followed by recovering; and the GAB mutant did not induce conspicuous symptoms. Also, the GAC mutant, but not the GAB mutant, conferred complete cross protection against the parental virus carrying a mite allergen as a reporter. When tested on transgene-silenced transgenic squash, the ability of posttranscriptional gene silencing suppression of the mutated HC-Pro of GAC was not significantly affected. We concluded that the mutations of the HC-Pro of ZYMV reduce the degrees of pathogenicity on squash and also abolish the ability for eliciting the hypersensitive reaction on C. quinoa, and that the mutant GAC is a useful mild strain for cross protection.


Plant Disease ◽  
2013 ◽  
Vol 97 (8) ◽  
pp. 1124-1124 ◽  
Author(s):  
V. Trkulja ◽  
D. Kovačić ◽  
B. Ćurković ◽  
A. Vučurović, I. Stanković ◽  
A. Bulajić ◽  
...  

During July 2012, field-grown melon plants (Cucumis melo L.) with symptoms of mosaic, chlorotic mottling, and vein banding as well as blistering and leaf malformation were observed in one field in the locality of Kladari (municipality of Doboj, Bosnia and Herzegovina). Disease incidence was estimated at 60%. A total of 20 symptomatic plants were collected and tested with double-antibody sandwich (DAS)-ELISA using commercial polyclonal antisera (Bioreba AG, Reinach, Switzerland) against four the most commonly reported melon viruses: Cucumber mosaic virus (CMV), Watermelon mosaic virus (WMV), Zucchini yellow mosaic virus (ZYMV), and Papaya ringspot virus (PRSV) (1,3). Commercial positive and negative controls were included in each assay. Only CMV was detected serologically in all screened melon samples. Sap from an ELISA-positive sample (162-12) was mechanically inoculated to test plants using 0.01 M phosphate buffer (pH 7.0). The virus caused necrotic local lesions on Chenopodium amaranticolor 5 days after inoculation, while mild to severe mosaic was observed on Nicotiana rustica, N. glutinosa, N. tabacum ‘Samsun,’ Cucurbita pepo ‘Ezra F1,’ and Cucumis melo ‘Ananas’ 10 to 14 days post-inoculation. All five inoculated plants of each experimental host were DAS-ELISA positive for CMV. The presence of CMV in all naturally and mechanically infected plants was further verified by conventional reverse transcription (RT)-PCR. Total RNAs were extracted with the RNeasy Plant Mini Kit (Qiagen, Hilden, Germany) according to the manufacturer's instructions and used as template in RT-PCR. RT-PCR was carried out with the One-Step RT-PCR Kit (Qiagen) using primer pair CMVCPfwd and CMVCPrev (4), amplifying the entire coat protein (CP) gene and part of 3′- and 5′-UTRs of CMV RNA 3. Total RNAs obtained from the Serbian CMV isolate from Cucurbita pepo ‘Olinka’ (GenBank Accession No. HM065510) and healthy melon leaves were used as positive and negative controls, respectively. An amplicon of the correct predicted size (871 bp) was obtained from all naturally and mechanically infected plants as well as from positive control, but not from healthy tissues. The amplified product derived from isolate 162-12 was purified with QIAquick PCR Purification Kit (Qiagen) and sequenced directly using the same primer pair as in RT-PCR (KC559757). Multiple sequence alignment of the 162-12 isolate CP sequence with those available in GenBank, conducted with MEGA5 software, revealed that melon isolate from Bosnia and Herzegovina showed the highest nucleotide identity of 99.7% (100% amino acid identity) with eight CMV isolates originating from various hosts from Serbia (GQ340670), Spain (AJ829770 and 76, AM183119), the United States (U20668, D10538), Australia (U22821), and France (X16386). Despite the fact that CMV is well established in majority of Mediterranean countries and represents an important threat for many agriculture crops, including pepper in Bosnia and Herzegovina (2), to our knowledge, this is the first report of CMV infecting melon in Bosnia and Herzegovina. Melon popularity as well as production value has been rising rapidly and the presence of CMV may have a drastic economic impact on production of this crop in Bosnia and Herzegovina. References: (1) E. E. Grafton-Cardwell et al. Plant Dis. 80:1092, 1996. (2) M. Jacquemond. Adv. Virus Res. 84:439, 2012. (3) M. Luis-Arteaga et al. Plant Dis. 82:979, 1998. (4) K. Milojević et al. Plant Dis. 96:1706, 2012.


Plant Disease ◽  
2012 ◽  
Vol 96 (9) ◽  
pp. 1384-1384 ◽  
Author(s):  
R. A. C. Jones ◽  
D. Real ◽  
S. J. Vincent ◽  
B. E. Gajda ◽  
B. A. Coutts

Tedera (Bituminaria bituminosa (L.) C.H. Stirton vars albomarginata and crassiuscula) is being established as a perennial pasture legume in southwest Australia because of its drought tolerance and ability to persist well during the dry summer and autumn period. Calico (bright yellow mosaic) leaf symptoms occurred on occasional tedera plants growing in genetic evaluation plots containing spaced plants at Newdegate in 2007 and Buntine in 2010. Alfalfa mosaic virus (AlMV) infection was suspected as it often causes calico in infected plants (1,2) and infects perennial pasture legumes in local pastures (1,3). Because AlMV frequently infects Medicago sativa (alfalfa) in Australia and its seed stocks are commonly infected (1,3), M. sativa buffer rows were likely sources for spread by aphids to healthy tedera plants. When leaf samples from plants with typical calico symptoms from Newdegate (2007) and Buntine (2010) were tested by ELISA using poyclonal antisera to AlMV, Bean yellow mosaic virus (BYMV) and Cucumber mosaic virus (CMV), only AlMV was detected. When leaf samples from 864 asymptomatic spaced plants belonging to 34 tedera accessions growing at Newdegate and Mount Barker in 2010 were tested by ELISA, no AlMV, BYMV, or CMV were detected, despite presence of M. sativa buffer rows. A culture of AlMV isolate EW was maintained by serial planting of infected seed of M. polymorpha L. (burr medic) and selecting seed-infected seedlings (1,3). Ten plants each of 61 accessions from the local tedera breeding program were grown at 20°C in an insect-proof air conditioned glasshouse. They were inoculated by rubbing leaves with infective sap containing AlMV-EW or healthy sap (five plants each) using Celite abrasive. Inoculations were always done two to three times to the same plants. When both inoculated and tip leaf samples from each plant were tested by ELISA, AlMV was detected in 52 of 305 AlMV-inoculated plants belonging to 36 of 61 accessions. Inoculated leaves developed local necrotic or chlorotic spots or blotches, or symptomless infection. Systemic invasion was detected in 20 plants from 12 accessions. Koch's postulates were fulfilled in 12 plants from nine accessions (1 to 2 of 5 plants each), obvious calico symptoms developing in uninoculated leaves, and AlMV being detected in symptomatic samples by ELISA, inoculation of sap to diagnostic indicator hosts (2) and RT-PCR with AlMV CP gene primers. Direct RT-PCR products were sequenced and lodged in GenBank. When complete nucleotide CP sequences (666 nt) of two isolates from symptomatic tedera samples and two from alfalfa (Aq-JX112758, Hu-JX112759) were compared with that of AlMV-EW, those from tedera and EW were identical (JX112757) but had 99.1 to 99.2% identities to the alfalfa isolates. JX112757 had 99.4% identity with Italian tomato isolate Y09110. Systemically infected tedera foliage sometimes also developed vein clearing, mosaic, necrotic spotting, leaf deformation, leaf downcurling, or chlorosis. Later-formed leaves sometimes recovered, but plant growth was often stunted. No infection was detected in the 305 plants inoculated with healthy sap. To our knowledge, this is the first report of AlMV infecting tedera in Australia or elsewhere. References: (1) B. A. Coutts and R. A. C. Jones. Ann. Appl. Biol. 140:37, 2002. (2) E. M. J. Jaspars and L. Bos. Association of Applied Biologists, Descriptions of Plant Viruses No. 229, 1980. (3) R. A. C. Jones. Aust. J. Agric. Res. 55:757, 2004.


Plant Disease ◽  
2005 ◽  
Vol 89 (10) ◽  
pp. 1129-1129 ◽  
Author(s):  
R. Krause-Sakate ◽  
A. S. Jadão ◽  
A. C. Firmino ◽  
M. A. Pavan ◽  
F. M. Zerbini ◽  
...  

Sequiviruses are isometric aphidborne plant viruses. Dandelion yellow mosaic virus (DaYMV), genus Sequivirus, was isolated from dandelion and lettuce in Europe. Lettuce mottle virus (LeMoV), a putative sequivirus, is often found in mixed infections with Lettuce mosaic virus (LMV) in Brazil (3). DaYMV, LeMoV and LMV cause similar mosaics in field-grown lettuce. Differences in biology and sequence suggest that DaYMV and LeMoV are distinct species (2). Forty-two and 101 lettuce samples with mosaic symptoms collected from two locations near Santiago during a survey of lettuce viruses in Chile in 2002 and 2003, respectively, were analyzed for the presence of LeMoV using reverse transcription polymerase chain reaction (RT-PCR). Total RNA was extracted (1) and used for RT-PCR with the specific LeMoV primers pairs Lmo3 (5′ ACATGAGCACTAGTGAGG 3′) and Lmo4 (5′ AGATAGAGCCGTCT GGCG 3′) (2). One of the 42 and three of the 101 samples produced the expected 300-bp fragment. Isometric particles of 30 nm diameter, typical of a sequivirus, were visualized by transmission electron microscopy. These samples were tested using RT-PCR for the presence of LMV and Cucumber mosaic virus (CMV), but no mixed infections were observed. One isolate, Ch36, was reamplified with the degenerate primer pairs DALE 1 (5′ GARTTCAACATGCACGCCAG 3′) and DALE 2 (5′ TTTTTCTCCCCATYCGTCAT 3′) which amplify part of the putative replicase gene (2) and produced a 563-bp fragment that was cloned on pGEM-T Easy (Promega, Madison, WI) and sequenced. The Ch36 product (EMBL Accession No. AM039965) showed 97% amino acid identity with LeMoV from Brazil, 79% with DaYMV, 72% with the sequivirus Parsnip yellow fleck virus, and 34% with the waikavirus Maize chlorotic dwarf virus. To our knowledge, this is the first report of a sequivirus in field lettuce in Chile, and although the virus was found at low incidence, this report extends the range of LeMoV to the western side of the Cordillera de Los Andes. The impact of LeMoV needs to be further analyzed in Chile, Brazil, and possibly other South American countries. References: (1) Y. D. Bertheau et al. DNA amplification by polymerase chain reaction (PCR) 1998. In: Methods for the Detection and Quantification of Erwinia carotovora subsp. atroseptica on potatoes. M. C. N. Perombelon and J. M. van der Wolff, eds. Scott. Crop Res. Inst. Occasional Publ., Dundee, 1998. (2) A. S. Jadão. Caracterização parcial e desenvolvimento de oligonucleotídeos específicos para detecção de sequivirus infectando alface. Ph.D. thesis. FCA-UNESP-Botucatu, Brazil, 2004. (3) O. Stangarlin et al. Plant Dis. 84:490, 2000.


Plant Disease ◽  
2012 ◽  
Vol 96 (1) ◽  
pp. 149-149 ◽  
Author(s):  
A. Vučurović ◽  
A. Bulajić ◽  
I. Stanković ◽  
D. Ristić ◽  
D. Nikolić ◽  
...  

During a survey of cucurbit viruses in the Gornji Tavankut locality (North Backa District), Serbia in June 2011, field-grown (a surface of 1.8 ha) watermelon plants (Citrullus lanatus [Thunb.] Matsum and Nakai) with mild mosaic symptoms were observed. Large numbers of Aphis gossypii were colonizing the crop. A total of 26 samples, six from plants exhibiting mosaic and 20 from asymptomatic plants, were analyzed by double-antibody sandwich-ELISA using polyclonal antisera virus (Bioreba AG, Reinach, Switzerland) against three cucurbit-infecting viruses known to infect Cucurbita pepo in Serbia: Zucchini yellow mosaic virus (ZYMV), Cucumber mosaic virus, and Watermelon mosaic virus (3). Commercial positive and negative controls were included in ELISA analysis. Only six symptomatic samples tested positive for ZYMV, but no other tested viruses were found. The virus was mechanically transmitted from a representative ELISA-positive watermelon sample (550-11) to five plants of C. pepo ‘Ezra F1’ and severe mosaic was noticed 10 days after inoculation. For further confirmation of ZYMV infection, total RNA from a naturally infected watermelon plant and symptomatic C. pepo ‘Ezra F1’ plants were extracted with the RNeasy Plant Mini Kit (Qiagen, Hilden, Germany). Reverse transcription (RT)-PCR was performed with the One-Step RT-PCR Kit (Qiagen) using primer pair ZY-2 and ZY-3 (2). Total RNA obtained from a Serbian isolate of ZYMV from pumpkin (GenBank Accession No. HM072432) and healthy watermelon plants were used as positive and negative controls, respectively. The expected sizes of the RT-PCR products (1,186 bp) were amplified from naturally and mechanically infected symptomatic samples, but not from healthy tissues. The amplified product that derived from isolate 550-11 was purified (QIAquick PCR Purification Kit, Qiagen), sequenced in both directions, deposited in GenBank (Accession No. JN561294), and subjected to sequence analysis using MEGA4 software. Sequence comparisons revealed a high nucleotide identity of 99.9 to 99.8% and 100 to 99.6% amino acid identity for the CP gene with Serbian ZYMV isolates from C. pepo (Accession Nos. JF308188, HM072431, and HM072432). The nucleotide and deduced amino acid sequences of the entire CP gene (837 nt) of the Serbian ZYMV isolate from watermelon shared 99.9 to 93.7% and 100 to 96.8% identity, respectively, with innumerous isolates of ZYMV deposited in the GenBank (e.g., Accession Nos. AJ420012–17 and FJ705262). To our knowledge, this is the first report of ZYMV spreading its host range to watermelon in Serbia. ZYMV infection has been responsible for severe epidemics on cucurbits throughout the world (1). The presence of ZYMV on watermelon could therefore represent a serious threat for this valuable crop in Serbia, especially considering that it is prevalent in other cucurbit crops in the country and the vectors are widespread. References: (1) H. Lecoq et al. Virus Res. 141:190, 2009. (2) K. G. Thomson et al. J. Virol. Methods 55:83, 1995. (3) A. Vučurović et al. Pestic. Phytomed. (Belgrade) 24:85, 2009.


Plant Disease ◽  
2012 ◽  
Vol 96 (2) ◽  
pp. 243-248 ◽  
Author(s):  
Akhtar Ali ◽  
Osama Mohammad ◽  
Abeer Khattab

Field surveys were conducted from 2008 to 2010 to detect and determine the incidence of viruses in the major cucurbit-growing areas of Oklahoma. In total, 1,049 symptomatic leaf samples (890 from cucurbits, 109 from weed species, and 50 from crop plants [agricultural crops]) were collected from 90 fields in four counties (Atoka, Blaine, Jefferson, and Tulsa) of Oklahoma. Samples were tested against seven viruses, including Cucumber mosaic virus (CMV), Cucumber green mottle mosaic virus (CGMMV), Melon necrotic spot virus (MNSV), Papaya ringspot virus-watermelon strain (PRSV-W, formerly known as Watermelon mosaic virus-1), Squash mosaic virus (SqMV), Watermelon mosaic virus-2 (WMV-2), and Zucchini yellow mosaic virus (ZYMV), using dot-immunobinding assay (DIBA). Results showed the highest incidence for PRSV (51%), followed by WMV-2 (14%) and ZYMV (10%) among the collected samples. SqMV, MNSV, and CMV were detected in 3.8, 3.3, and 1.1% of the samples, respectively. None of the samples collected during surveys reacted positively against the antiserum of CGMMV. Mixed virus infections were common involving two (5.18%) or three (4.61%) viruses in various combinations. New weed host species were found to be infected with PRSV when confirmed by both DIBA and reverse-transcription polymerase chain reaction (RT-PCR). Some weed species contained possible new viruses when analyzed by random RT-PCR, followed by cloning, sequencing, and BLAST analysis with sequences in GenBank.


Sign in / Sign up

Export Citation Format

Share Document