The emerging invasive alien plants of the Drakensberg Alpine Centre, southern Africa

Bothalia ◽  
2012 ◽  
Vol 42 (2) ◽  
pp. 71-85 ◽  
Author(s):  
C. Carbutt

An ‘early detection’-based desktop study has identified 23 taxa as ‘current’ emerging invasive alien plants in the Drakensberg Alpine Centre (DAC) and suggests a further 27 taxa as probable emerging invaders in the future. These 50 species are predicted to become problematic invasive plants in the DAC because they possess the necessary invasive attributes and have access to potentially suitable habitat that could result in them becoming major invaders. Most of the ‘current’ emerging invasive alien plant species of the DAC are of a northern-temperate affinity and belong to the families Fabaceae and Rosaceae (four taxa each), followed by Boraginaceae and Onagraceae (two taxa each). In terms of functional type (growth form), most taxa are shrubs (9), followed by herbs (8), tall trees (5), and a single climber. The need to undertake a fieldwork component is highlighted and a list of potential study sites to sample disturbed habitats is provided. A global change driver such as increased temperature is predicted to not only result in extirpation of native alpine species, but to also possibly render the environment more susceptible to alien plant invasions due to enhanced competitive ability and pre-adapted traits. A list of emerging invasive alien plants is essential to bring about swift management interventions to reduce the threat of such biological invasions.

Diversity ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 254
Author(s):  
Karin Jacobs ◽  
Tersia Conradie ◽  
Shayne Jacobs

The Cape Floristic Region (CFR) is globally known for its plant biodiversity, and its flora is commonly referred to as fynbos. At the same time, this area is under severe pressure from urbanization, agricultural expansion and the threat of invasive alien plants. Acacia, Eucalyptus and Pinus are the common invasive alien plants found across the biome and considerable time, effort and resources are put into the removal of invasive alien plants and the rehabilitation of native vegetation. Several studies have shown that invasion not only affects the composition of plant species, but also has a profound effect on the soil chemistry and microbial populations. Over the last few years, a number of studies have shown that the microbial populations of the CFR are unique to the area, and harbour many endemic species. The extent of the role they play in the invasion process is, however, still unclear. This review aims to provide an insight into the current knowledge on the different microbial populations from this system, and speculate what their role might be during invasion. More importantly, it places a spotlight on the lack of information about this process.


2021 ◽  
Author(s):  
Melford Mbedzi ◽  
Milingoni Peter Tshisikhawe ◽  
Sebataolo Rahlao ◽  
Innocent Ndidzulafhi Sinthumule

Abstract Riparian invasive alien plants are known to compete with native plant species for water, space, daylight, and different other resources by decreasing structural diversity of native vegetation and subsequently changing the functioning of the ecosystem. The aim of this study was to investigate the rate of native plant species recolonization after the eradication of A. decurrens. The investigation was done in the Waterberg District Municipality, Limpopo Province in a farm, which is highly infested with A. decurrens. Twenty-four permanent plots of 10 m x 10 m were constructed and the A. decurrens individuals in the plots were removed and the area was monitored for a period of 2 years. The size of quadrats was based on the size and distribution of the invasive alien plants which develop in an aggregated form and have exceptionally small canopies.


1970 ◽  
Vol 1 (2) ◽  
pp. 129-133 ◽  
Author(s):  
Ripu M Kunwar

Invasive alien species colonize aggressively, threatening native biodiversity. The success of invasive alien plants is due to their opportunistic exploitation of anthropogenic disturbances, the absence of natural enemies, and, frequently, their allelopathic competitive strategies. Invasive species can have a significant impact on development, affecting sustainability of livelihood, food security and essential ecosystem services and dynamics. Eupatorium adenophorum Spreng. and E. odoratum L. (forest killer, local name banmara) are unpalatable and highly competitive. They have taken hold in scattered sites throughout eastern and central Nepal, currently, they are also rapidly spreading westward. Efforts are being made to control established invasive species, but a better understanding of why species become invasive offers the possibility of taking pre-emptive measures. Key words: Invasive alien plant species, Eupatorium, biological control, livelihood Himalayan Journal of Sciences 1(2): 129-133, 2003


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Luke J. Potgieter ◽  
Mirijam Gaertner ◽  
Patrick J. O’Farrell ◽  
David M. Richardson

Abstract Background Natural resources within and around urban landscapes are under increasing pressure from ongoing urbanisation, and management efforts aimed at ensuring the sustainable provision of ecosystem services (ES) are an important response. Given the limited resources available for assessing urban ES in many cities, practical approaches for integrating ES in decision-making process are needed. Methods We apply remote sensing techniques (integrating LiDAR data with high-resolution multispectral imagery) and combined these with supplementary spatial data to develop a replicable approach for assessing the role of urban vegetation (including invasive alien plants) in providing ES and ecosystem disservices (EDS). We identify areas denoting potential management trade-offs based on the spatial distribution of ES and EDS using a local-scale case study in the city of Cape Town, South Africa. Situated within a global biodiversity hotspot, Cape Town must contend with widespread invasions of alien plants (especially trees and shrubs) along with complex socio-political challenges. This represents a useful system to examine the challenges in managing ES and EDS in the context of urban plant invasions. Results Areas of high ES provision (for example carbon sequestration, shade and visual amenity) are characterized by the presence of large trees. However, many of these areas also result in numerous EDS due to invasions of alien trees and shrubs – particularly along rivers, in wetlands and along the urban edge where tall alien trees have established and spread into the natural vegetation (for example increased water consumption, increased fire risk and reduced soil quality). This suggests significant trade-offs regarding the management of species and the ES and EDS they provide. Conclusions The approach applied here can be used to provide recommendations and to guide city planners and managers to fine-tune management interventions at local scales to maximise the provision of ES.


Bothalia ◽  
2019 ◽  
Vol 49 (1) ◽  
Author(s):  
Khotso Kobisi ◽  
Lerato Seleteng-Kose ◽  
Annah Moteetee

Background: Several recent studies have documented the ethnobotanical uses of plants used in Lesotho, in particular those used for medicinal purposes. However, these reports did not make a distinction between indigenous, naturalised or invasive alien plants. Furthermore, the existing records on the status of the occurrence of these plants in the country are not up to date.Objectives: The aim of this article is to present information on the current knowledge regarding the status of invasive alien plant species in Lesotho and to discuss their ethnobotanical uses, distribution in the country, origin and safety. We further assess the existing legislation designed to regulate the spread of such plants and make a comparison with the invasiveness and regulation of such plants in the neighbouring South Africa.Method: This article is based mainly on a literature survey of published information obtained from various databases, such as Google Scholar, Science Direct and Scopus, as well as from unpublished data such as technical reports, dissertations and theses.Results: A total of 57 species, comprising one pteridophyte, one gymnosperm and 56 flowering plants (52 dicotyledons and 4 monocotyledons) are documented. Although these plants are invasive in nature, they are utilised for a variety of purposes including food, treatment of various medical conditions, cosmetics and functional uses. However, some of the species are reported to be poisonous to both animals and humans, with a majority of the plants causing skin irritation. Most of these species are widely distributed throughout the country and most of them originated from America, Europe and Asia. Although a number of reports on the occurrence of invasive alien plants have been generated, the information therein has not yet been published.Conclusion: This study has identified knowledge gaps in terms of safety and distribution of the species, as well as shortfalls in the policies intended to regulate invasive alien species (IAS) in Lesotho. Further research in this regard is therefore recommended.


2019 ◽  
Vol 286 (1905) ◽  
pp. 20191020 ◽  
Author(s):  
Raquel A. Garcia ◽  
Susana Clusella-Trullas

A growing body of research demonstrates the impacts of invasive alien plants on native animals, but few studies consider thermal effects as a driver of the responses of native organisms. As invasive alien plants establish and alter the composition and arrangement of plant communities, the thermal landscapes available to ectotherms also change. Our study reviews the research undertaken to date on the thermal effects of alien plant invasions on native reptiles, amphibians, insects and arachnids. The 37 studies published between 1970 and early 2019 portray an overall detrimental effect of invasive plants on thermal landscapes, ectothermic individuals' performance and species abundance, diversity and composition. With a case study of a lizard species, we illustrate the use of thermal ecology tools in plant invasion research and test the generality of alien plant effects: changes in thermoregulation behaviour in invaded landscapes varied depending on the level of invasion and lizard traits. Together, the literature review and case study show that thermal effects of alien plants on ectotherms can be substantial albeit context-dependent. Further research should cover multiple combinations of native/invasive plant growth forms, invasion stages and ectotherm traits. More attention is also needed to test causality along the chain of effects from thermal landscapes to individuals, populations and communities.


Author(s):  
Ali Omer ◽  
Maha Kordofani ◽  
Haytham H. Gibreel ◽  
Petr Pyšek ◽  
Mark van Kleunen

AbstractStudies on plant invasions depend on local and regional checklists of the alien flora. However, global overview studies have shown that some regions, including many African countries, remain understudied in this regard. To contribute to filling this gap, here we present the first checklist of alien plants of Sudan and South Sudan (the Sudans). We analysed the taxonomic and geographical composition of the species on this list. Our result show that of the 113 alien species in Sudans (99 in Sudan and 59 in South Sudan), 92 (81.4%) are naturalized and 21 (18.6%) are just casual aliens. The number of naturalized species represent 2.2% of the total flora of the Sudans (4096). The alien species belong to 44 families and 85 genera, and many of them are native to Southern America and Northern America (85.8%). Annual and perennial herbs are the prevailing life forms in the alien flora of the Sudans (68.1%), and, among the casual species, perennial herbs are underrepresented whereas woody tree species are over-represented. Alien plants of the Sudans are mostly used for medicinal and environmental purposes globally. The naturalized plants predominantly occur in man-made disturbed habitats, such as agricultural and ruderal habitats. This first overview of the alien flora of the Sudans should stimulate further research and recording of the alien flora to better understand the drivers and consequences of alien plants in the Sudans.


2020 ◽  
Vol 30 (1) ◽  
pp. 21-31 ◽  
Author(s):  
R. Chaudhary ◽  
B. B. Shrestha ◽  
H. Thapa ◽  
M. Siwakoti

Extent of plant invasions has been expected to be low in protected areas such as national parks due to low anthropogenic activities and high wilderness. However, recent researches across the world have revealed that plant invasions can be severe in the national parks with negative impacts on the protected species and ecosystems. Unfortunately, the status of plant invasions in the national parks of Nepal is mostly unknown. In this study, we sampled at seven locations inside the Parsa National Park (PNP) to document diversity and abundance of invasive alien plant species (IAPS) and their impacts on tree regeneration. Altogether, 130 quadrats of 10 m × 10 m were sampled. We recorded 14 IAPS in the PNP. Three of the IAPS (Chromolana odorata, Lantana camara and Mikania micrantha) were among the 100 of the world’s worst invasive alien species. C. odorata was found to be the most frequent IAPS with the highest cover. The frequency and cover of the IAPS were higher at the sites close to the settlements than at the sites away from the settlements. The species richness of the IAPS was also higher at the sites closer to the settlements than away. The sapling density of the tree species was found to have declined with the increasing cover of the IAPS suggesting that the IAPS had negatively affected tree regeneration. Our data revealed that the PNP has already witnessed massive plant invasions with widespread occurrence of three of the world’s worst invasive species. Therefore, it is high time to integrate management of invasive alien species in the management plan of the park.


2011 ◽  
Vol 23 (1) ◽  
pp. 43-56 ◽  
Author(s):  
Adam Zając ◽  
Barbara Tokarska-Guzik ◽  
Maria Zając

The role of rivers and streams in the migration of alien plants into the Polish CarpathiansThe Carpathians are among the regions of Poland that are generally less susceptible to invasive alien plants. The factor limiting the spread of the species of this group is, above all, the mountain climate. Even species originating from other mountain regions, e.g. the HimalayanImpatiens glandulifera, have their localities only at low elevations, in the Carpathian foothills. In most cases, alien plant species migrate into the Carpathians from the lowlands. The river valleys provide the migration corridors used by alien species in the course of their progress into new territories of the upper mountain localities. The situation along some mountain rivers, where invasive alien species dominate the native vegetation, is dramatic. Their spread is facilitated not only by easy diaspore transport but also by some anthropogenic factors, such as, river engineering and the transformation of riparian habitats and progressing devastation. Currently, we can observe some invasive alien plants "in statu nascendi", developing a new, secondary range in the Carpathians (e.g.Chaerophyllum aureum) or at the foothills, along the Wisła (Vistula) and San river valleys (e.g.Eragrostis albensis). For some species, cities were the destination for the first stage of future migration, e.g.Acer negundo. In the Carpathians, where many national parks and nature reserves are located, the continuous monitoring of the spread of invasive alien plants should be one of the principal activities of botanists.


Sign in / Sign up

Export Citation Format

Share Document