scholarly journals Perceived heat stress and health effects on construction workers

2015 ◽  
Vol 19 (3) ◽  
pp. 151 ◽  
Author(s):  
Priya Dutta ◽  
Ajit Rajiva ◽  
Dileep Andhare ◽  
GulrezShah Azhar ◽  
Abhiyant Tiwari ◽  
...  
2020 ◽  
Vol 64 (5) ◽  
pp. 522-535 ◽  
Author(s):  
Mohammed Al-Bouwarthan ◽  
Margaret M Quinn ◽  
David Kriebel ◽  
David H Wegman

Abstract Objectives Assess the impact of summer heat exposure (June–September) on residential construction workers in Al-Ahsa, Saudi Arabia by evaluating (i) heart rate (HR) responses, hydration status, and physical workload among workers in indoor and outdoor construction settings, (ii) factors related to physiological responses to work in hot conditions, and (iii) how well wet-bulb globe temperature-based occupational exposure limits (WBGTOELs) predict measures of heat strain. Methods Twenty-three construction workers (plasterers, tilers, and laborers) contributed 260 person-days of monitoring. Workload energy expenditure, HR, fluid intake, and pre- and postshift urine specific gravity (USG) were measured. Indoor and outdoor heat exposures (WBGT) were measured continuously and a WBGTOEL was calculated. The effects of heat exposure and workload on heart rate reserve (HRR), a measure of cardiovascular strain, were examined with linear mixed models. A metric called ‘heat stress exceedance’ (HSE) was constructed to summarize whether the environmental heat exposure (WBGT) exceeded the heat stress exposure limit (WBGTOEL). The sensitivity and specificity of the HSE as a predictor of cardiovascular strain (HRR ≥30%) were determined. Results The WBGTOEL was exceeded frequently, on 63 person-days indoors (44%) and 91(78%) outdoors. High-risk HRR occurred on 26 and 36 person-days indoors and outdoors, respectively. The HSE metric showed higher sensitivity for HRR ≥30% outdoors (89%) than indoors (58%) and greater specificity indoors (59%) than outdoors (27%). Workload intensity was generally moderate, with light intensity work more common outdoors. The ability to self-pace work was associated with a lower frequency of HRR ≥30%. USG concentrations indicated that workers began and ended their shifts dehydrated (USG ≥1.020). Conclusions Construction work where WBGTOEL is commonly exceeded poses health risks. The ability of workers to self-pace may help reduce risks.


Author(s):  
Pongsit Boonruksa ◽  
Thatkhwan Maturachon ◽  
Pornpimol Kongtip ◽  
Susan Woskie

Prolonged or intense exposure to heat can lead to a range of health effects. This study investigated heat exposure and heat-related symptoms which sugarcane workers (90 sugarcane cutters and 93 factory workers) experienced during a harvesting season in Thailand. During the hottest month of harvesting season, wet bulb globe temperature was collected in the work environment, and workloads observed, to assess heat stress. Urine samples for dehydration test, blood pressure, heart rate, and body temperature were measured pre- and post-shift to measure heat strain. Fluid intake and heat-related symptoms which subjects had experienced during the harvesting season were gathered via interviews at the end of the season. From the results, sugarcane cutters showed high risk for heat stress and strain, unlike factory workers who had low risk based on the American Conference of Governmental Industrial Hygiene (ACGIH) threshold limit values (TLVs) for heat stress. Dehydration was observed among sugarcane cutters and significant physiological changes including heart rate, body temperature, and systolic blood pressure occurred across the work shift. Significantly more sugarcane cutters reported experiencing heat-related symptoms including weakness/fatigue, heavy sweating, headache, rash, muscle cramp, dry mouth, dizziness, fever, dry/cracking skin, and swelling, compared to sugarcane factory workers. We conclude that the heat stress experienced by sugarcane cutters working in extremely hot environments, with high workloads, is associated with acute health effects. Preventive and control measures for heat stress are needed to reduce the risk of heat strain.


2019 ◽  
Vol 76 (Suppl 1) ◽  
pp. A73.2-A73
Author(s):  
Matthias Otto ◽  
Tord Kjellstrom ◽  
Bruno Lemke

Exposure to extreme heat negatively affects occupational health. Heat stress indices like Wet Bulb Globe Temperature (WBGT) combine temperature and humidity and allow quantifying the climatic impact on human physiology and clinical health. Multi-day periods of high heat stress (aka. heat waves) affect occupational health and productivity independently from the absolute temperature levels; e.g. well-documented heat-waves in Europe caused disruption, hospitalisations and deaths (2003 French heat wave: more than 1000 extra deaths, 15–65 years, mainly men) even though the temperatures were within the normal range of hotter countries.Climate change is likely to increase frequency and severity of periods of high heat stress. However, current global grid-cell based climate models are not designed to predict heat waves, neither in terms of severity or frequency.By analysing 37 years of historic daily heat index data from almost 5000 global weather stations and comparing them to widely used grid-cell based climate model outputs over the same period, our research explores methods to assess the frequency and intensity of heat waves as well as the associated occupational health effects at any location around the world in the future.Weather station temperature extreme values (WBGT) for the 3 hottest days in 30 years exceed the mean WBGT of the hottest month calculated from climate models in the same grid-cell by about 2 degrees in the tropics but by 10 degrees at higher latitudes in temperate climate regions.Our model based on the relationship between actual recorded periods of elevated heat-stress and grid-cell based climate projections, in combination with population and employment projections, can quantify national and regional productivity loss and health effects with greater certainty than is currently the case.


Author(s):  
Engr. Jeferd E. Saong ◽  
Abigail L. Babaran ◽  
Glenn Dale A. Balaho

Construction sites generate high levels of dust typically from concrete, silica, asbestos, cement, wood, stone, and sand. Workers who are exposed to the said environment are faced with the risk of inhaling particulate materials that might lead to adverse respiratory problems. The lack of publication on the awareness of construction workers on the risk associated with silica dust exposure was the basis of the study. This study assessed the level of awareness of construction workers on the risk associated with silica dust exposure and the safety practices to minimize it. Purposive sampling was used in the selection of 65 respondents from different construction sites located in Baguio City, Philippines. A survey questionnaire containing four point Likert scales were used to determine the level of awareness on the health effects, mode of transmission, and sources of silica dust. The study further assessed the level of safety practices in mitigating the effects of silica dust exposure. The respondents were moderately aware (M=2.52) of the health effects, moderately aware (M=2.69) of the mode of transmission, and moderately aware (M=3.08) of the sources of silica dust. The results further showed that the respondents moderately practiced (M=2.84) activities to mitigate the health effects of silica dust exposure and moderately practiced (M=3.17) the use of personal protective equipment in the construction site. The results suggest that construction workers must be made more aware of the health effects of silica dust exposure and, mitigation activities and utilization of personal protective equipment must be strictly imposed in the construction site.


Author(s):  
Mohammed Al-Bouwarthan ◽  
Margaret M. Quinn ◽  
David Kriebel ◽  
David H. Wegman

Saudi Arabia (SA) is one of the hottest countries in the world. This study was conducted to assess the impact of summer heat stress in Southeastern SA on short-term kidney injury (KI) among building construction workers and to identify relevant risk factors. Measurements of urinary albumin-creatinine ratio (ACR), height, weight, hydration, symptoms, daily work and behavioral factors were collected in June and September of 2016 from a cohort of construction workers (n = 65) in Al-Ahsa Province, SA. KI was defined as ACR ≥ 30 mg/g. Multivariate linear regression analysis was used to assess factors related to cross-summer changes in ACR. A significant increase in ACR occurred among most workers over the study period; incidence of KI was 18%. Risk factors associated with an increased ACR included dehydration, short sleep, and obesity. The findings suggest that exposure to summer heat may lead to the development of KI among construction workers in this region. Adequate hydration and promotion of healthy habits among workers may help reduce the risk of KI. A reduction in work hours may be the most effective intervention because this action can reduce heat exposure and improve sleep quality.


2014 ◽  
Vol 1061-1062 ◽  
pp. 728-732
Author(s):  
Min Wu ◽  
Joe Dong ◽  
Andy Zhao ◽  
Wai Ching Tang ◽  
Willy Sher ◽  
...  

Construction workers are vulnerable to heat stress, and a number of heat-related injuries and deaths have been reported. This study thus introduces a phase change material (PCM) based cooling garment designed for construction workers. The PCM cooling garment will be effective in reducing the workers body temperature and can extend their maximum tolerable time on sites.


Ergonomics ◽  
2015 ◽  
Vol 59 (4) ◽  
pp. 479-495 ◽  
Author(s):  
Albert P. C. Chan ◽  
Y. P. Guo ◽  
Francis K. W. Wong ◽  
Y. Li ◽  
S. Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document