scholarly journals Prevalence and antibacterial resistance patterns of extended-spectrum beta-lactamase producing Gram-negative bacteria isolated from ocular infections

2016 ◽  
Vol 64 (4) ◽  
pp. 303 ◽  
Author(s):  
G Rameshkumar ◽  
R Ramakrishnan ◽  
C Shivkumar ◽  
R Meenakshi ◽  
V Anitha ◽  
...  
KYAMC Journal ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 171-175
Author(s):  
Tania Rahman ◽  
Momtaz Begum ◽  
Sharmeen Sultana ◽  
SM Shamsuzzaman

Background: In recent years, Extended-spectrum beta-lactamase (ESBL) producing microorganisms have complicated treatment of infections due to resistance of ESBL producing strains to a wide range of antimicrobials. Objective: Target of this study was to determine the prevalence of ESBL producing gramnegative bacteria in neonatal sepsis cases and to reveal the antimicrobial susceptibility pattern of those isolated ESBL producers. Materials and Methods: This cross sectional study was carried out in Dhaka Medical College Hospital (DMCH) over a period of 12 months from January to December in 2016. Following isolation and identification of gram-negative bacteria from blood samples of suspected septicemic neonates, antimicrobial susceptibility test was performed by Kirby Bauer disk-diffusion method and ESBL producers were detected by Double Disk Synergy (DDS) test. Results: Among 52 Gram-negative bacteria isolated from 106 blood samples, 34.61% ESBL producers were detected and Enterobacter spp. (45%) was predominant followed by Klebsiella pneumoniae (33.33%). None of the ESBL producers was resistant to colistin and tigecycline. All ESBL producing Acinetobacter baumannii, 77.78% and 66.67% of ESBL producing Enterobacter spp and Klebsiella spp. respectively showed resistance to meropenem. All ESBL producers were resistant to piperacillintazobactam. Conclusion: Appropriate measures should be taken to prevent the spread of ESBL producing strains by combining strategies for infection prevention, control and rational use of antibiotics. KYAMC Journal Vol. 11, No.-4, January 2021, Page 171-175


2017 ◽  
Vol 10 (1) ◽  
pp. 8-12
Author(s):  
Shikha Paul ◽  
Sanya Tahmina Jhora ◽  
Prashanta Prasun Dey ◽  
Bilkis Ara Begum

Detection of Extended spectrum beta lactamase (ESBL) enzyme producing bacteria in hospital settings is vital as ESBL genes are transmissible. This study was carried out to determine the distribution of ESBL producing gram negative isolates at a tertiary care hospital in Dhaka city which deals with the patients hailing from relatively low socioeconomic status.Onehundred and twenty four gram negative bacteria isolated from different clinical specimens from outpatient and inpatient departments of Sir Salimullah Medical College and Mitford Hospital (SSMC & MH) were tested for ESBL by E test ESBL method in the department of microbiology of Sir Salimullah medical college (SSMC) from March 2013 to August 2013.Out of 124 gram negative bacteria 69 (55.65%) were positive for ESBL. Among the ESBL producers, Esch.coli was the highest (46.38%) which was followed by Serratia spp (11.59%), Enterobacter spp (10.14%), Proteus spp, (8.70%), Acinetobacter spp.(7.24%) and Klebsiella spp.(5.79%). Out of 32 Esch.coli isolated from outpatient department, 10 (31.25%) were positive for ESBL. On the other hand out of 27 Esch. coli isolated from inpatient department, 22 (81.48%) were positive for ESBL. The difference was statistically significant (p<0.001).So the present study reveals that the distribution of ESBL producers is more among the hospitalized patients than the patients of the community.Bangladesh J Med Microbiol 2016; 10 (1): 8-12


Author(s):  
Stefan Borgmann ◽  
Beate Rieß ◽  
David Meintrup ◽  
Ingo Klare ◽  
Guido Werner

Previously it was shown that application of probiotics stopped the acquisition of vancomycin-resistant Enterococcus faecium (VRE) by patients in an early rehabilitation ward. Once the application of probiotics ended, we examined whether acquisition of VRE reoccurred. Furthermore, we examined whether probiotics altered prevalence of vancomycin-susceptible E. faecium (VSE) and Gram-negative bacteria, which produce extended spectrum beta-lactamase (ESBL). Although probiotic application ceased in April 2018, VRE-colonized patients rarely presented on that ward until 2019. Probiotic treatment also resulted in a decreased number of patients with VSE and ESBL. While decreased incidence of VRE occurred immediately, decreased VSE and ESBL numbers occurred months later. A probiotic-mediated decrease of VSE and ESBL incidence cannot be explained when assuming bacterial transmission exclusively as a linear cause and effect event. The decrease is better understood by considering bacterial transmissions to be stochastic events, which depend on various driving forces similar to an electric current. We hypothesize that VRE, VSE and ESBL uptake by patients and by staff members mutually reinforced each other, leading staff members to form a bacterial reservoir, similar to a condenser that stores electrical energy. Probiotic treatment then inhibited regeneration of that store, resulting in a breakdown of the driving force.


Sign in / Sign up

Export Citation Format

Share Document