A comparative study of alpha amylase inhibitory activities of common anti-diabetic plants at Kharagpur 1 block

2010 ◽  
Vol 4 (2) ◽  
pp. 115 ◽  
Author(s):  
Analava Mitra ◽  
M Manjunatha ◽  
B Dineshkumar
Antioxidants ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 421 ◽  
Author(s):  
Etsassala ◽  
Badmus ◽  
Waryo ◽  
Marnewick ◽  
Cupido ◽  
...  

The re-investigation of a methanolic extract of Salvia africana-lutea collected from the Cape Floristic Region, South Africa (SA), afforded four new abietane diterpenes, namely 19-acetoxy-12-methoxycarnosic acid (1), 3β-acetoxy-7α-methoxyrosmanol (2), 19-acetoxy-7α-methoxyrosmanol (3), 19-acetoxy-12-methoxy carnosol (4), and two known named clinopodiolides A (5), and B (6), in addition to four known triterpenes, oleanolic, and ursolic acids (7, 8), 11,12-dehydroursolic acid lactone (9) and β-amyrin (10). The chemical structural elucidation of the isolated compounds was determined on the basis of one and two dimensional nuclear magnetic resonance (1D and 2D NMR), high-resolution mass spectrometry (HRMS), ultra violet (UV), fourier transform infrared (IR), in comparison with literature data. The in vitro bio-evaluation against alpha-glucosidase showed strong inhibitory activities of 8, 10, and 7, with the half inhibitory concentration (IC50) values of 11.3 ± 1.0, 17.1 ± 1.0 and 22.9 ± 2.0 µg/mL, respectively, while 7 demonstrated the strongest in vitro alpha-amylase inhibitory activity among the tested compounds with IC50 of 12.5 ± 0.7 µg/mL. Additionally, some of the compounds showed significant antioxidant capacities. In conclusion, the methanolic extract of S. africana-lutea is a rich source of terpenoids, especially abietane diterpenes, with strong antioxidant and anti-diabetic activities that can be helpful to modulate the redox status of the body and could therefore be an excellent candidate for the prevention of the development of diabetes, a disease where oxidase stress plays an important role.


2020 ◽  
Vol 22 ◽  
pp. 100343
Author(s):  
Neha Chaudhary ◽  
Latha Sabikhi ◽  
Shaik Abdul Hussain ◽  
Sathish Kumar M H

2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Annalingam Kirisanth ◽  
M. N. M. Nafas ◽  
Ranga K. Dissanayake ◽  
Jayantha Wijayabandara

Medicinal plants have been the main focus of natural product research. However, recent research has revealed that lower plants including bryophytes are also a major resource of biologically active compounds with novel structures. Sri Lanka is considered as a biodiversity hotspot with a higher degree of endemism flora including bryophytes. In this study, different species of bryophytes were investigated for their antimicrobial and alpha-amylase inhibitory activities. The air-dried plant materials of 6 different bryophyte species, Marchantia sp., Fissidens sp., Plagiochila sp., Sematophyllum demissum, Hypnum cupressiforme, and Calymperes motley, were subjected to sequential cold extraction with 3 different organic solvents. All three types of organic crude extracts were subjected to screening of antimicrobial bioassays using the disc-diffusion method against 3 bacterial strains and 1 fungal strain. According to the results obtained, 6 extracts out of 18 showed antibacterial activity for tested Gram-positive bacteria and 1 active against Gram-negative bacteria. Two extracts showed activity against the pathogenic fungus strain. Extracts from some plants were active against tested bacterial as well as fungal species. TLC-based bioautographic study was carried out to identify the corresponding active bands which is useful for active compound isolation. Furthermore, the ethyl acetate extracts were subjected to evaluate alpha-amylase inhibitory activity where three extracts out of six extracts showed moderate inhibitory activity for alpha-amylase with IC50 ranging 8–30%.


2015 ◽  
Vol 28 (10) ◽  
pp. 605-613 ◽  
Author(s):  
Elaheh Kashani-Amin ◽  
Azadeh Ebrahim-Habibi ◽  
Bagher Larijani ◽  
Ali Akbar Moosavi-Movahedi

1981 ◽  
Vol 193 (1) ◽  
pp. 29-36 ◽  
Author(s):  
B Shivaraj ◽  
T N Pattabiraman

An inhibitor I-1, capable of acting on both alpha-amylase and trypsin, was purified to homogeneity from ragi (finger-millet) grains. The factor was found to be stable to heat treatment at 100 degrees C for 1 h in the presence of NaCl and also was stable over the wide pH range 1-10. Pepsin and Pronase treatment of inhibitor I-1 resulted in gradual loss of both the inhibitory activities. Formation of trypsin-inhibitor I-1 complex, amylase-inhibitor I-1 complex and trypsin-inhibitor I-1-amylase trimer complex was demonstrated by chromatography on a Bio-Gel P-200 column. This indicated that the inhibitor is ‘double-headed’ in nature. The inhibitor was retained on a trypsin-Sepharose 4B column at pH 7.0. Elution at acidic pH resulted in almost complete recovery of amylase-inhibitory and trypsin-inhibitory activities. alpha-Amylase was retained on a trypsin-Sepharose column to which inhibitor I-1 was bound, but not on trypsin-Sepharose alone. Modification of amino groups of the inhibitor with 2,4,6-trinitrobenzenesulphonic acid resulted in complete loss of amylase-inhibitory activity but only 40% loss in antitryptic activity. Modification of arginine residues by cyclohexane-1,2-dione led to 85% loss of antitryptic activity after 5 h, but no effect on amylase-inhibitory activity. The results show that a single bifunctional protein factor is responsible for both amylase-inhibitory and trypsin-inhibitory activities with two different reactive sites.


Author(s):  
NANTAPORN DINLAKANONT ◽  
CHANIDA PALANUVEJ ◽  
NIJSIRI RUANGRUNGSI

Objective: Starch metabolizing enzyme inhibitors are able to retard postprandial glucose absorption. This study aimed to investigate the in vitro inhibitory activities of alpha-glucosidase and alpha-amylase of three Malvaceous weeds i.e. Sidaacuta Burm. f., Abutilon indicum (Linn.) Sweet and Malvastrumcoromandelianum (Linn.) Garcke. Methods: The stems, roots and leaves of S. acuta, A. indicum and M. coromandelianum were sequentially extracted in dichloromethane and methanol, respectively. All fractions were tested for the inhibitory activities on yeast alpha-glucosidase, rat intestinal alpha-glucosidase and porcine alpha-amylase. p-Nitrophenyl-α-D-glucopyranoside and 2-chloro-4 nitrophenol-α-D- maltotrioside were used as the substrate for glucosidase and amylase respectively. Results: The dichloromethane fraction of the roots and stems from A. indicum and dichloromethane as well as methanolic fractions of the stems of M. coromandelianum could inhibit yeast alpha-glucosidase compared to 1-deoxynojirimycin with the IC50 of 0.36, 0.45, 0.48, 0.48 and 0.58 mg/ml respectively. A. indicum root methanolic fraction had the highest inhibitory effect on rat alpha-glucosidase activity compared to 1-deoxynojirimycin with the IC50 of 0.08 and 0.11 mg/ml respectively. M. coromandelianum, the dichloromethane fraction of roots and the methanolic fraction of stems, showed the strongest effect on alpha-amylase inhibition compared to acarbose with the IC50 of 0.07, 0.07 and 2.7 mg/ml, respectively. Conclusion: S. acuta, A. indicum and M. coromandelianum dichloromethane and methanolic fractions of the root, stem and leaf parts demonstrated an appreciable inhibitory activity on alpha-amylase from porcine, alpha-glucosidase from Saccharomyces cerevisiae and from rat intestine compared to 1-deoxynojirimycin and acarbose.


Sign in / Sign up

Export Citation Format

Share Document