scholarly journals A new tool for monitoring brain function: eye tracking goes beyond assessing attention to measuring central nervous system physiology

2015 ◽  
Vol 10 (8) ◽  
pp. 1231 ◽  
Author(s):  
Uzma Samadani
2018 ◽  
Vol 94 (1114) ◽  
pp. 446-452 ◽  
Author(s):  
Borros M Arneth

BackgroundThe gut–brain axis facilitates a critical bidirectional link and communication between the brain and the gut. Recent studies have highlighted the significance of interactions in the gut–brain axis, with a particular focus on intestinal functions, the nervous system and the brain. Furthermore, researchers have examined the effects of the gut microbiome on mental health and psychiatric well-being.The present study reviewed published evidence to explore the concept of the gut–brain axis.AimsThis systematic review investigated the relationship between human brain function and the gut–brain axis.MethodsTo achieve these objectives, peer-reviewed articles on the gut–brain axis were identified in various electronic databases, including PubMed, MEDLINE, CIHAHL, Web of Science and PsycINFO.ResultsData obtained from previous studies showed that the gut–brain axis links various peripheral intestinal functions to brain centres through a broad range of processes and pathways, such as endocrine signalling and immune system activation. Researchers have found that the vagus nerve drives bidirectional communication between the various systems in the gut–brain axis. In humans, the signals are transmitted from the liminal environment to the central nervous system.ConclusionsThe communication that occurs in the gut–brain axis can alter brain function and trigger various psychiatric conditions, such as schizophrenia and depression. Thus, elucidation of the gut–brain axis is critical for the management of certain psychiatric and mental disorders.


2017 ◽  
Vol 18 (2) ◽  
pp. 132-141 ◽  
Author(s):  
Robyn S Klein ◽  
Charise Garber ◽  
Nicole Howard

Neurosurgery ◽  
2017 ◽  
Vol 82 (6) ◽  
pp. 770-780 ◽  
Author(s):  
Joao Prola Netto ◽  
Jeffrey Iliff ◽  
Danica Stanimirovic ◽  
Kenneth A Krohn ◽  
Bronwyn Hamilton ◽  
...  

Abstract Physiological and pathological processes that increase or decrease the central nervous system's need for nutrients and oxygen via changes in local blood supply act primarily at the level of the neurovascular unit (NVU). The NVU consists of endothelial cells, associated blood–brain barrier tight junctions, basal lamina, pericytes, and parenchymal cells, including astrocytes, neurons, and interneurons. Knowledge of the NVU is essential for interpretation of central nervous system physiology and pathology as revealed by conventional and advanced imaging techniques. This article reviews current strategies for interrogating the NVU, focusing on vascular permeability, blood volume, and functional imaging, as assessed by ferumoxytol an iron oxide nanoparticle.


2016 ◽  
Vol 7 (4) ◽  
pp. 253-258 ◽  
Author(s):  
Jing Zhang ◽  
Weizhen Zhang

AbstractIrisin was initially discovered as a novel hormone-like myokine released from skeletal muscle during exercise to improve obesity and glucose dysfunction by stimulating the browning of white adipose tissue. Emerging evidence have indicated that irisin also affects brain function. FNDC5 mRNA and FNDC5/irisin immunoreactivity are present in various regions of the brain. Central irisin is involved in the regulation of neural differentiation and proliferation, neurobehavior, energy expenditure and cardiac function. Elevation of peripheral irisin level stimulates hippocampal genes related to neuroprotection, learning and memory. In this brief review, we summarize the current understanding on neuronal functions of irisin. In addition, we discuss the pros and cons for this molecule as a potential messenger mediating the crosstalk between skeletal muscle and central nervous system during exercise.


Author(s):  
John Rothwell ◽  
Andrea Antal ◽  
David Burke ◽  
Antony Carlsen ◽  
Dejan Georgiev ◽  
...  

1999 ◽  
Vol 5 (S2) ◽  
pp. 1340-1341
Author(s):  
E. Bushong ◽  
M. E. Martone ◽  
C. Foster ◽  
M. H. Ellisman

Each astrocyte forms an extensive network of fine processes within the surrounding neural tissue, interacting extensively with neighboring neurons and blood vessels. Fine glial processes surround synapses and probably modulate synaptic transmission. Glial endfeet on capillaries are responsible for transport of ions and metabolites and possibly control blood flow. Alterations in these fine structures may be of significance in brain function and disease. Glial fibrillary acidic protein (GFAP) is an intermediate filament found in astrocytes of the central nervous system. GFAP is commonly found in the perikarya and processes of protoplasmic and fibrous type astrocytes. Immunohistochemical labeling of GFAP is extensively used as a means of determining the location and shape of astrocytes. However, its labeling pattern varies with brain region (e.g. cortex vs. hippocampus), with cell state (natural vs. reactive astrocytes), and with the specific α- GFAP antibody used. Furthermore, Golgi-stained or dye-filled astrocytes show numerous small appendages or vellate structures that conform to the surrounding tissue and do not stain for GFAP.


1960 ◽  
Vol 106 (444) ◽  
pp. 967-978 ◽  
Author(s):  
Aaron Smith

The voluminous literature reporting the effects of cortical lesions has shown contradictory and diverse findings from the earliest studies to the present (Franz, 1907; Klebanoff, 1945; Klebanoff, Singer and Wilensky, 1954; Meyer, 1957). Some investigators found no losses in intellectual function regardless of the locus of the lesion; others, a temporary loss followed by recovery of original capacity. Still others have reported significant losses following brain damage in the forebrain or other portions of the central nervous system. But for investigators in all three categories, what did “brain damage” consist of? The neurologists Brain and Strauss have observed “The study of psychological problems without an adequate knowledge of the physiology and pathology of the central nervous system can be likened to the exploration of the uncharted seas without the aid of a compass; and yet there are many psychologists who undertake the rash venture” (1955, p. vi). And what of the criteria on which the conclusions were based? An additional source of ambiguity is indicated by the fact that the overwhelming majority of conclusions on “mental” changes by psychiatrists and neurologists have generally been based on clinical or subjective estimates.Measurement, a crucial factor in any study, is of special importance in studies of brain damage and brain function, although despite a multiplicity of tests, there are few measures designed with attention to their unique problems. Tests employed in many psychological studies of brain damage were originally oriented toward quite different problems and had been carefully developed and standardized on non-brain damaged populations.


Sign in / Sign up

Export Citation Format

Share Document