scholarly journals A comparative study of the preventive effect of chlorhexidine o. 12% and nano zinc oxide particles on the distraction of collagen scaffolding of the hybrid layer by two immunohistochemistry and microleakage tests

2014 ◽  
Vol 2 (2) ◽  
pp. 33
Author(s):  
MohammadHossein Soltani ◽  
Homayoon Alaghemand ◽  
Ali Bijani ◽  
Behnaz Esmaeili ◽  
Pouralibaba Firouz ◽  
...  
2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Ximing Li ◽  
Homero Castaneda

Effect of zinc oxide nanoparticles on anticorrosion performance has been studied in conductive polyaniline containing zinc-rich primer in 3.5 wt% NaCl solution, using Electrochemical Impedance Spectroscopy (EIS) and localized electrochemical Scanning Vibrating Electrode Technique (SVET). The results showed that the addition of nano-zinc oxide particles in conductive polyaniline containing zinc-rich primer made the reaction of zinc more stable and slower, further increasing the effective cathodic protection period. EIS and SVET results confirmed that three performance evolution stages were obtained for zinc-rich primer being immersed in 3.5 wt% sodium chloride solution.


2017 ◽  
Vol 728 ◽  
pp. 204-208
Author(s):  
Tanapak Metanawin ◽  
Praripatsaya Panutumrong ◽  
Siripan Metanawin

The hybrid polymer materials of nano-zinc oxide were synthesized via miniemulsion polymerization technique. Zinc oxide nanoparticles were encapsulated by polystyrene to introduce multi-function to the hybrid nano-zinc oxide. The contents of zinc oxide particles in the hybrid nano-zinc oxide were various from 1wt% to 40wt%. The particles sizes of hybrid nano-zinc oxide were determined by using dynamic light scattering. It was showed that the particle size of the hybrid nano-zinc oxide was in the range of 124-205nm. Scanning electron microscopy was employed to determine the topography and morphology of hybrid nano-zinc oxide. The crystal structure of hybrid nano-zinc oxide were explored by X-ray diffraction spectroscopy.


2020 ◽  
Vol 14 (04) ◽  
pp. 525-532
Author(s):  
Dittaya Charoenkijkajorn ◽  
Sasiwimol Sanohkan

Abstract Objective This article aimed to study the effect of different concentrations of nano zinc oxide particles on the color change of MDX4–4210 facial silicone elastomer after artificial aging. Materials and Methods Silicone specimens (N = 150) were fabricated by incorporating intrinsic pigments and divided into three groups—white, yellow, and red, each group consisting of 50 specimens (n = 50). In each color, specimens were subdivided into five subgroups according to the quantity of zinc oxide nanoparticles (0, 0.5, 1.0, 1.5, and 2.0% weight), where the 0% weight served as the control in each group. All specimens were then subjected to artificial aging using an accelerated aging machine chamber for 12, 24, 48, and 72 hours. L*a*b* values of specimens were noted after a different aging period by a spectrophotometer and ∆E* was calculated. Statistical Analysis Two-way repeated analysis of variance (ANOVA) was done to examine the effects under test conditions (concentration and aging time) of each color group. Then color, concentration, and the aging period were subjected to three-way repeated ANOVA to investigate the effects of different colors and concentrations on ∆E*. Bonferroni’s test was performed to identify differences between groups. The significant level was at p = 0.05. Results The control group showed significantly higher ∆E* values than the test groups. The 1.5% test group showed significantly lower ∆E* compared with the others. The 0.5 to 2.0% of nano zinc oxide significantly decreased the color change of the silicone elastomer (p < 0.05), but there were no significant differences among groups. Conclusions Incorporation of 1.5% of nano zinc oxide can improve the color stability of silicone prosthesis (MDX4–4210).


2015 ◽  
Vol 1107 ◽  
pp. 326-332
Author(s):  
Abdul Rahim Yacob ◽  
Kamaluddeen Suleiman Kabo

The use of metal oxides in heterogeneous base catalysis has gained a large interest due to their application in many chemical and industrial processes and is environmental friendly. Basic metal oxides are commonly used and their structures, morphology and performance can be modified by method of preparation and thermal activation. In this study, surface modified amphoteric zinc oxide was prepared via hydration-dehydration method and characterised by TGA and FTIR. The basic strength at various temperatures is characterised by FTIR and back titration analyses. The results shows that surface modified zinc oxide has the highest basic strength of 1.453mmolg-1at 400°C making it a relatively good and suitable compound for use in heterogeneous basic catalysis. This result is also supported by FTIR spectra which show possible relationship between the Lewis O2-and increasing basic strength.


Sign in / Sign up

Export Citation Format

Share Document