scholarly journals Preparation and Study the Effect of Nano Zinc Oxide Particles Upon Some Mechanical and Thermal Properties of Epoxy Resin

2019 ◽  
Vol 14 (4) ◽  
pp. 109-130
Author(s):  
Kadhim Abed
2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Ximing Li ◽  
Homero Castaneda

Effect of zinc oxide nanoparticles on anticorrosion performance has been studied in conductive polyaniline containing zinc-rich primer in 3.5 wt% NaCl solution, using Electrochemical Impedance Spectroscopy (EIS) and localized electrochemical Scanning Vibrating Electrode Technique (SVET). The results showed that the addition of nano-zinc oxide particles in conductive polyaniline containing zinc-rich primer made the reaction of zinc more stable and slower, further increasing the effective cathodic protection period. EIS and SVET results confirmed that three performance evolution stages were obtained for zinc-rich primer being immersed in 3.5 wt% sodium chloride solution.


2017 ◽  
Vol 728 ◽  
pp. 204-208
Author(s):  
Tanapak Metanawin ◽  
Praripatsaya Panutumrong ◽  
Siripan Metanawin

The hybrid polymer materials of nano-zinc oxide were synthesized via miniemulsion polymerization technique. Zinc oxide nanoparticles were encapsulated by polystyrene to introduce multi-function to the hybrid nano-zinc oxide. The contents of zinc oxide particles in the hybrid nano-zinc oxide were various from 1wt% to 40wt%. The particles sizes of hybrid nano-zinc oxide were determined by using dynamic light scattering. It was showed that the particle size of the hybrid nano-zinc oxide was in the range of 124-205nm. Scanning electron microscopy was employed to determine the topography and morphology of hybrid nano-zinc oxide. The crystal structure of hybrid nano-zinc oxide were explored by X-ray diffraction spectroscopy.


2020 ◽  
Vol 14 (04) ◽  
pp. 525-532
Author(s):  
Dittaya Charoenkijkajorn ◽  
Sasiwimol Sanohkan

Abstract Objective This article aimed to study the effect of different concentrations of nano zinc oxide particles on the color change of MDX4–4210 facial silicone elastomer after artificial aging. Materials and Methods Silicone specimens (N = 150) were fabricated by incorporating intrinsic pigments and divided into three groups—white, yellow, and red, each group consisting of 50 specimens (n = 50). In each color, specimens were subdivided into five subgroups according to the quantity of zinc oxide nanoparticles (0, 0.5, 1.0, 1.5, and 2.0% weight), where the 0% weight served as the control in each group. All specimens were then subjected to artificial aging using an accelerated aging machine chamber for 12, 24, 48, and 72 hours. L*a*b* values of specimens were noted after a different aging period by a spectrophotometer and ∆E* was calculated. Statistical Analysis Two-way repeated analysis of variance (ANOVA) was done to examine the effects under test conditions (concentration and aging time) of each color group. Then color, concentration, and the aging period were subjected to three-way repeated ANOVA to investigate the effects of different colors and concentrations on ∆E*. Bonferroni’s test was performed to identify differences between groups. The significant level was at p = 0.05. Results The control group showed significantly higher ∆E* values than the test groups. The 1.5% test group showed significantly lower ∆E* compared with the others. The 0.5 to 2.0% of nano zinc oxide significantly decreased the color change of the silicone elastomer (p < 0.05), but there were no significant differences among groups. Conclusions Incorporation of 1.5% of nano zinc oxide can improve the color stability of silicone prosthesis (MDX4–4210).


2015 ◽  
Vol 46 (1) ◽  
pp. 130-142 ◽  
Author(s):  
Amal Abd El-Hameed El-Ebissy ◽  
Monira Nessem Michael ◽  
Shady Kamal Eldin Abdelhameed

Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2429
Author(s):  
Krittameth Kiatiporntipthak ◽  
Nanthicha Thajai ◽  
Thidarat Kanthiya ◽  
Pornchai Rachtanapun ◽  
Noppol Leksawasdi ◽  
...  

Polylactic acid (PLA) was melt-blended with epoxy resin to study the effects of the reaction on the mechanical and thermal properties of the PLA. The addition of 0.5% (wt/wt) epoxy to PLA increased the maximum tensile strength of PLA (57.5 MPa) to 67 MPa, whereas the 20% epoxy improved the elongation at break to 12%, due to crosslinking caused by the epoxy reaction. The morphology of the PLA/epoxy blends showed epoxy nanoparticle dispersion in the PLA matrix that presented a smooth fracture surface with a high epoxy content. The glass transition temperature of PLA decreased with an increasing epoxy content owing to the partial miscibility between PLA and the epoxy resin. The Vicat softening temperature of the PLA was 59 °C and increased to 64.6 °C for 0.5% epoxy. NMR confirmed the reaction between the -COOH groups of PLA and the epoxy groups of the epoxy resin. This reaction, and partial miscibility of the PLA/epoxy blend, improved the interfacial crosslinking, morphology, thermal properties, and mechanical properties of the blends.


Sign in / Sign up

Export Citation Format

Share Document