Effect of L-citrulline supplementation on blood glucose level and lipid profile in high-fat diet - and dexamethasone-induced type-2 diabetes in male wistar rats

Author(s):  
Timothy Danboyi ◽  
AbdulwahabW Alhassan ◽  
Abdulazeez Jimoh ◽  
Evelyn Hassan-Danboyi
Author(s):  
Lalitha V ◽  
Sivakumar T

Objective: This research elucidated the role of silymarin on intestinal alkaline phosphatase (IAP) level in type 2 diabetic rats.Methods: The type 2 diabetes mellitus was induced by a high-fat diet (HFD - 58% calories fat) for 2 weeks, and rats were intraperitoneally injected with streptozotocin (STZ) 35 mg/kg. Wistar rats were divided into four groups. Group I served as a non-diabetic (normal), Group II served as diabetic, Group III diabetic animals treated glibenclamide 600 μg/kg for 14 days, and Group IV diabetic animal treated with glibenclamide and silymarin 50 mg/kg/twice/d for 14 days. At the end of the study, blood glucose, lipid profile, and IAP level were measured.Results: A significant decrease in IAP, elevated levels of blood glucose, and lipid profile was seen in diabetic rats when compared with normal. The silymarin treatment showed a significant increase in IAP level, a significant reduction in glucose and lipid profile than diabetic rats.Conclusion: The present study concludes that silymarin treatment enhances the IAP levels which protect against hyperglycemia, hyperlipidemia, and vascular complications in diabetic rats.


2020 ◽  
Vol 66 (1) ◽  
pp. 18-36
Author(s):  
Toyin D. Alabi ◽  
Nicole L. Brooks ◽  
Oluwafemi O. Oguntibeju

SummaryIntroduction: The liver is involved in the metabolism of xenobiotics and their metabolites and it is vulnerable to oxidative damage. Hyperglycaemia is highly implicated in the progression of diabetes mellitus, and adversely affects the liver. Though, conventional hypoglycaemic drugs may be effective in reducing blood glucose, they do not appear to be effective in attenuating the progression of diabetes and its complications.Objective: This study evaluated the ameliorative effects of Anchomanes difformis on hyperglycaemia and hepatic injuries in type 2 diabetes.Methods: Type 2 diabetes was induced in male Wistar rats with a single intraperitoneal injection of streptozotocin (40 mg/kg BW) after two weeks of fructose (10%) administration. Aqueous extract of A. difformis (200 and 400 mg/kg BW) and glibenclamide (5 mg/kg BW) were administered orally for six weeks. Blood glucose concentrations were measured. Serum levels of liver dysfunction markers (ALT, AST, and ALP), total cholesterol, triglycerides, HDL- and LDL-cholesterol were investigated. Total protein, albumin, and globulin were also assessed. Antioxidant parameters: ORAC, GSH, GSSG, SOD, CAT and FRAP were evaluated in the liver while ORAC, FRAP and lipid peroxidation were determined in the serum. Histological examination of the liver tissue was carried out.Results: Treatment with aqueous extract of A. difformis significantly (p<0.05) reduced blood glucose and reversed steatosis in the diabetic-treated rats. The antioxidant status of diabetic-treated rats was significantly (p<0.05) improved. Serum levels of liver dysfunction markers were significantly (p<0.05) reduced in diabetic-treated rats.Conclusion: The findings in this study revealed that 400 mg/kgBW Anchomanes difformis was more effective than 200 mg/kg BW in ameliorating diabetes-induced hepatopathy, however, both doses of Anchomanes difformis demonstrated more antidiabetic ability than glibenclamide. Anchomanes difformis may be a novel and potential therapeutic agent in the management of diabetes and resulted hepatic injuries.


Hypertension ◽  
2015 ◽  
Vol 66 (suppl_1) ◽  
Author(s):  
Varunkumar G Pandey ◽  
Lars Bellner ◽  
Victor Garcia ◽  
Joseph Schragenheim ◽  
Andrew Cohen ◽  
...  

20-HETE (20-Hydroxyeicosatetraenoic acid) is a cytochrome P450 ω-hydroxylase metabolite of arachidonic acid that promotes endothelial dysfunction, microvascular remodeling and hypertension. Previous studies have shown that urinary 20-HETE levels correlate with BMI and plasma insulin levels. However, there is no direct evidence for the role of 20-HETE in the regulation of glucose metabolism, obesity and type 2 diabetes mellitus. In this study we examined the effect of 20-SOLA (2,5,8,11,14,17-hexaoxanonadecan-19-yl-20-hydroxyeicosa-6(Z),15(Z)-dienoate), a water-soluble 20-HETE antagonist, on blood pressure, weight gain and blood glucose in Cyp4a14 knockout (Cyp4a14-/-) mice fed high-fat diet (HFD). The Cyp4a14-/- male mice exhibit high vascular 20-HETE levels and display 20-HETE-dependent hypertension. There was no difference in weight gain and fasting blood glucose between Cyp4a14-/- and wild type (WT) on regular chow. When subjected to HFD for 15 weeks, a significant increase in weight was observed in Cyp4a14-/- as compared to WT mice (56.5±3.45 vs. 30.2±0.7g, p<0.05). Administration of 20-SOLA (10mg/kg/day in drinking water) significantly attenuated the weight gain (28.7±1.47g, p<0.05) and normalized blood pressure in Cyp4a14-/- mice on HFD (116±0.3 vs. 172.7±4.6mmHg, p<0.05). HFD fed Cyp4a14-/- mice exhibited hyperglycemia as opposed to normal glucose levels in WT on a HFD (154±1.9 vs. 96.3±3.0 mg/dL, p<0.05). 20-SOLA prevented the HFD-induced hyperglycemia in Cyp4a14-/- mice (91±8mg/dL, p<0.05). Plasma insulin levels were markedly high in Cyp4a14-/- mice vs. WT on HFD (2.66±0.7 vs. 0.58±0.18ng/mL, p<0.05); corrected by the treatment with 20-SOLA (0.69±0.09 ng/mL, p<0.05). Importantly, glucose and insulin tolerance tests showed impaired glucose homeostasis and insulin resistance in Cyp4a14-/- mice on HFD; ameliorated by treatment with 20-SOLA. This novel finding that blockade of 20-HETE actions by 20-SOLA prevents HFD-induced obesity and restores glucose homeostasis in Cyp4a14-/- mice suggests that 20-HETE contributes to obesity, hyperglycemia and insulin resistance in HFD induced metabolic disorder. The molecular mechanisms underlying 20-HETE mediated metabolic dysfunction are being currently explored.


2021 ◽  
pp. 193-200
Author(s):  
Prasetyastuti Prasetyastuti ◽  
Dian Setiawan Ghozali

Diabetes Type 2 can cause oxidative stress leading to the accumulation of reactive oxygen species. Soyferment-Tempeh, a fermented soybean product with aerobic and anaerobic R. oligosporus incubation has a high antioxidant content of isoflavones that can regulate oxidative stress in diabetes. In this study, we evaluate the effects of Soyferment-Tempeh on lipid profile, Retinol-Binding Protein 4 (RBP4), and Phosphoenolpyruvate Carboxykinase (PEPCK) gene expression in type 2 diabetic mice. A total of 30 mice with the age of eight weeks were divided into six groups as follows: A) nondiabetic, B) diabetic mice, C) diabetic mice with metformin, D), E), and F) diabetic mice with Soyferment-Tempeh doses of 10, 20, or 40mg/100g body weight (BW), respectively, were administered treatments orally by gavages. Blood was collected for assessment of blood glucose level, and lipid profile before and after 3 weeks of the administration. After sacrificing the mice, livers were used for RBP4 and PEPCK gene expression assessment. Supplementation with three different doses of Soyferment-Tempeh in streptozotocin-induced diabetic mice for 21 days significantly (p<0.001) reduced blood glucose level, total cholesterol, triglycerides, low-density lipoprotein level, atherogenic index, and increased high-density lipoprotein level. There was a significant decrease in RBP4 gene expression in the Soyferment-Tempeh of dose 10mg/100g BW treatment groups (p<0.05), while the PEPCK gene expression did not significantly differ (p>0.05). These results demonstrate that supplementation with Soyferment-Tempeh decreases blood glucose level, atherogenic index, improves lipid profile, and decreases RBP4.


Sign in / Sign up

Export Citation Format

Share Document