scholarly journals Chalepin: A compound from Ruta angustifolia L. pers exhibits cell cycle arrest at S phase, suppresses nuclear factor-kappa B (NF-κB) pathway, signal transducer and activation of transcription 3 (STAT3) phosphorylation and extrinsic apoptotic pathway in non-small cell lung cancer carcinoma (A549)

2017 ◽  
Vol 13 (51) ◽  
pp. 489 ◽  
Author(s):  
Norhaniza Aminudin ◽  
JaimeStella Moses Richardson ◽  
SriNurestri Abd Malek
2021 ◽  
Vol 22 (3) ◽  
pp. 1341
Author(s):  
Sang Wu Lee ◽  
Soo-Keun Yeon ◽  
Go Woon Kim ◽  
Dong Hoon Lee ◽  
Yu Hyun Jeon ◽  
...  

Although multiple myeloma (MM) patients benefit from standard bortezomib (BTZ) chemotherapy, they develop drug resistance, resulting in relapse. We investigated whether histone deacetylase 6 (HDAC6) inhibitor A452 overcomes bortezomib resistance in MM. We show that HDAC6-selective inhibitor A452 significantly decreases the activation of BTZ-resistant markers, such as extracellular signal-regulated kinases (ERK) and nuclear factor kappa B (NF-κB), in acquired BTZ-resistant MM cells. Combination treatment of A452 and BTZ or carfilzomib (CFZ) synergistically reduces BTZ-resistant markers. Additionally, A452 synergizes with BTZ or CFZ to inhibit the activation of NF-κB and signal transducer and activator of transcription 3 (STAT3), resulting in decreased expressions of low-molecular-mass polypeptide 2 (LMP2) and LMP7. Furthermore, combining A452 with BTZ or CFZ leads to synergistic cancer cell growth inhibition, viability decreases, and apoptosis induction in the BTZ-resistant MM cells. Overall, the synergistic effect of A452 with CFZ is more potent than that of A452 with BTZ in BTZ-resistant U266 cells. Thus, our findings reveal the HDAC6-selective inhibitor as a promising therapy for BTZ-chemoresistant MM.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Diana M. Morales-Prieto ◽  
Stephanie Ospina-Prieto ◽  
Wittaya Chaiwangyen ◽  
Maja Weber ◽  
Sebastian Hölters ◽  
...  

Invasiveness of trophoblast and choriocarcinoma cells is in part mediated via leukemia inhibitory factor- (LIF-) induced activation of signal transducer and activator of transcription 3 (STAT3). The regulation of STAT3 phosphorylation at its ser727 binding site, possible crosstalk with intracellular MAPK signaling, and their functional implications are the object of the present investigation. JEG-3 choriocarcinoma cells were cultured in presence/absence of LIF and the specific ERK1/2 inhibitor (U0126). Phosphorylation of signaling molecules (p-STAT3 (ser727 and tyr705) and p-ERK1/2 (thr 202/tyr 204)) was assessed per Western blot. Immunocytochemistry confirmed results, but also pinpointed the location of phosphorylated signaling molecules. STAT3 DNA-binding capacity was studied with a colorimetric ELISA-based assay. Cell viability and invasion capability were assessed by MTS and Matrigel assays. Our results demonstrate that LIF-induced phosphorylation of STAT3 (tyr705 and ser727) is significantly increased after blocking ERK1/2. STAT3 DNA-binding capacity and cell invasiveness are enhanced after LIF stimulation and ERK1/2 blockage. In contrast, proliferation is enhanced by LIF but reduced after ERK1/2 inhibition. The findings herein show that blocking ERK1/2 increases LIF-induced STAT3 phosphorylation and STAT3 DNA-binding capacity by an intranuclear crosstalk, which leads to enhanced invasiveness and reduced proliferation.


2007 ◽  
Vol 131 (9) ◽  
pp. 1350-1360 ◽  
Author(s):  
Rosanede Oliveira Duarte Achcar ◽  
Philip T. Cagle ◽  
Jaishree Jagirdar

Abstract Context.—Signal transducer and activator of transcription 3 (STAT3) is constitutively activated in diverse human cancers and plays a critical role in tumor cell survival, proliferation, migration, invasion, angiogenesis, and inhibition of apoptosis. The phosphorylated active form of STAT3 (pSTAT3) mediates its effects via nuclear transcriptional activity. However, it was recently observed that the nonphosphorylated, cytoplasmic, inactive form of STAT3 is involved in cell motility and consequently tumor invasion. It appears that, although STAT3 is not absolutely required for tumor formation, tumors that develop in the presence of STAT3 become dependent on its expression for their survival, making it a potential therapeutic target. Objective.—To investigate the possible utility of STAT3 as a future therapeutic target in non–small cell lung carcinoma (NSCLC) and malignant mesothelioma (MM). Design.—Immunohistochemical expression of MIB-1, STAT3, and pSTAT3 was assessed in 303 NSCLC and 44 MM archival cases. Results.—A more conspicuous expression of inactive STAT3 (91.44% in NSCLC and 79.5% in MM cases) was present compared with the nuclear activated form pSTAT3 (60.53% in NSCLC and 61.4% in MM cases). MIB-1 did not correlate with the expression of STAT3 or pSTAT3. Conclusions.—The strong expression of cytoplasmic inactive STAT3 in NSCLC and MM cases implies a major role for STAT3 in tumor motility, invasion, and metastasis via a nontranscriptional pathway. We conclude that STAT3 and pSTAT3 are up-regulated in a high percentage of NSCLCs and MMs, regardless of tumor type, age, sex, smoking status, stage and grade of tumor, or survival, providing a basis for therapeutic intervention.


Endocrinology ◽  
2010 ◽  
Vol 151 (4) ◽  
pp. 1509-1519 ◽  
Author(s):  
Marieke Ruiter ◽  
Patricia Duffy ◽  
Steven Simasko ◽  
Robert C. Ritter

Reduction of food intake and body weight by leptin is attributed largely to its action in the hypothalamus. However, the signaling splice variant of the leptin receptor, LRb, also is expressed in the hindbrain, and leptin injections into the fourth cerebral ventricle or dorsal vagal complex are associated with reductions of feeding and body weight comparable to those induced by forebrain leptin administration. Although these observations suggest direct hindbrain action of leptin on feeding and body weight, the possibility that hindbrain leptin administration also activates the Janus kinase/signal transducer and activator of transcription 3 (STAT3) signaling in the hypothalamus has not been investigated. Confirming earlier work, we found that leptin produced comparable reductions of feeding and body weight when injected into the lateral ventricle or the fourth ventricle. We also found that lateral and fourth ventricle leptin injections produced comparable increases of STAT3 phosphorylation in both the hindbrain and the hypothalamus. Moreover, injection of 50 ng of leptin directly into the nucleus of the solitary tract also increased STAT3 phosphorylation in the hypothalamic arcuate and ventromedial nuclei. Increased hypothalamic STAT3 phosphorylation was not due to elevation of blood leptin concentrations and the pattern of STAT3 phosphorylation did not overlap distribution of the retrograde tracer, fluorogold, injected via the same cannula. Our observations indicate that even small leptin doses administered to the hindbrain can trigger leptin-related signaling in the forebrain, and raise the possibility that STAT3 phosphorylation in the hypothalamus may contribute to behavioral and metabolic changes observed after hindbrain leptin injections.


Metallomics ◽  
2014 ◽  
Vol 6 (5) ◽  
pp. 1014 ◽  
Author(s):  
Sabine H. van Rijt ◽  
Isolda Romero-Canelón ◽  
Ying Fu ◽  
Steve D. Shnyder ◽  
Peter J. Sadler

Sign in / Sign up

Export Citation Format

Share Document