scholarly journals Identification of multiple widespread tephras from the volcanic glass shard chemistry of muddy sediments of the Nohbi Formation, central Japan

2019 ◽  
Vol 58 (5) ◽  
pp. 333-348
Author(s):  
Seiji Maruyama ◽  
Takeshi Makinouchi ◽  
Takafumi Hirata ◽  
Tohru Danhara
2021 ◽  
Author(s):  
◽  
Matthew Thomas Stevens

<p>The Coromandel Volcanic Zone (CVZ) was the longest-lived area of volcanism in New Zealand hosting the commencement of large explosive rhyolitic and ignimbrite forming eruptions. The NW trending Coromandel Peninsula is the subaerial remnant of the Miocene-Pliocene CVZ, which is regarded as a tectonic precursor to the Taupo Volcanic Zone (TVZ), currently the most dynamic and voluminous rhyolitic volcanic centre on Earth. This study presents new single glass shard major and trace element geochemical analyses for 72 high-silica volcanic tephra layers recovered from well-dated deep-sea sediments of the SW Pacific Ocean by the Ocean Drilling Program (ODP) Leg 181. ODP Site 1124, ~720 km south and east from the CVZ, penetrated sediments of the Rekohu Drift yielding an unprecedented record of major explosive volcanic eruptions owing to the favourable location and preservation characteristics at this site. This record extends onshore eruptive sequences of CVZ explosive volcanism that are obscured by poor exposure, alteration, and erosion and burial by younger volcanic deposits. Tephra layers recovered from Site 1124 are well-dated through a combination of biostratigraphic and palaeomagnetic methods allowing the temporal geochemical evolution of the CVZ to be reconstructed in relation to changes in the petrogenesis of CVZ arc magmas from ~ 10 to 2 Ma. This thesis establishes major and trace element geochemical "fingerprints" for all Site 1124-C tephras using well-established (wavelength dispersive electron probe microanalysis) and new (laser ablation inductively coupled plasma mass spectrometry) in situ single glass shard microanalytical techniques. Trace element analysis of Site 1124-C glass shards (as small as 20 um) demonstrate that trace element signatures offer a more specific, unequivocal characterisation for distinguishing (and potentially correlating) between tephras with nearly identical major element compositions. The Site 1124-C core contains 72 unaltered Miocene-Pliocene volcanic glass-shard-bearing laminae > 1 cm thick that correspond to 83 or 84 geochemical eruptive units. Revised eruptive frequencies based on the number of geochemical eruptive units identified represent at least one eruption every 99 kyr for the late Miocene and one per 74 kyr for the Pliocene. The frequency of tephra deposition throughout the history of the CVZ has not been constant, rather reflecting pulses of major explosive eruptions resulting in closely clustered groups of tephra separated by periods of reduced activity, relative volcanic quiescence or non-tephra deposition. As more regular activity became prevalent in the Pliocene, it was accompanied by more silicic magma compositions. Rhyolitic volcanic glass shards are characterised by predominantly calc-alkaline and minor high-K enriched major element compositions. Major element compositional variability of the tephras deposited between 10 Ma and 2 Ma reveals magma batches with pre-eruptive compositional gradients implying a broad control by fractional crystallisation. Trace element characterisation of glass shards reveals the role of magmatic processes that are not readily apparent in the relatively homogeneous major element compositions. Multi-element diagrams show prominent negative Sr and Ti anomalies against primitive mantle likely caused by various degrees of plagioclase and titanomagnetite fractional crystallisation in shallow magma chambers. Relative Nb depletion, characteristic of arc volcanism, is moderate in CVZ tephras. HFSEs (e.g. Nb, Zr, Ti) and HREEs (e.g. Yb, Lu) remain immobile during slab fluid flux suggesting they are derived from the mantle wedge. LILE (e.g. Rb, Cs, Ba, Sr) and LREE (e.g. La, Ce) enrichments are consistent with slab fluid contribution. B/La and Li/Y ratios can be used as a proxy for the flux of subducting material to the mantle wedge, they suggest there is a strong influence from this component in the generation of CVZ arc magmas, potentially inducing melting. CVZ tephra show long-term coherent variability in trace element geochemistry. Post ~ 4 Ma tephras display a more consistent, less variable, chemical fingerprint that persists up to and across the CVZ/TVZ transition at ~ 2 Ma. Initiation of TVZ volcanism may have occurred earlier than is presently considered, or CVZ to TVZ volcanism may have occurred without significant changes in magma generation processes.</p>


2015 ◽  
Vol 12 (12) ◽  
pp. 3789-3804 ◽  
Author(s):  
W. Clymans ◽  
L. Barão ◽  
N. Van der Putten ◽  
S. Wastegård ◽  
G. Gísladóttir ◽  
...  

Abstract. Biogenic silica (BSi) is used as a proxy by soil scientists to identify biological effects on the Si cycle and by palaeoecologists to study environmental changes. Alkaline extractions are typically used to measure BSi in both terrestrial and aquatic environments. The dissolution properties of volcanic glass in tephra deposits and their nanocrystalline weathering products are hypothesized to overlap those of BSi; however, data to support this behaviour are lacking. The potential that Si-bearing fractions dissolve in alkaline media (SiAlk) that do not necessarily correspond to BSi brings the applicability of BSi as a proxy into question. Here, analysis of 15 samples reported as tephra-containing allows us to reject the hypothesis that tephra constituents produce an identical dissolution signal to that of BSi during alkaline extraction. We found that dissolution of volcanic glass shards is incomplete during alkaline dissolution. Simultaneous measurement of Al and Si used here during alkaline dissolution provides an important parameter to enable us to separate glass shard dissolution from dissolution of BSi and other Si-bearing fractions. The contribution from volcanic glass shards (between 0.2 and 4 wt % SiO2), the main constituent of distal tephra, during alkaline dissolution can be substantial depending on the total SiAlk. Hence, soils and lake sediments with low BSi concentrations are highly sensitive to the additional dissolution from tephra constituents and its weathering products. We advise evaluation of the potential for volcanic or other non-biogenic contributions for all types of studies using BSi as an environmental proxy.


2021 ◽  
Author(s):  
◽  
Matthew Thomas Stevens

<p>The Coromandel Volcanic Zone (CVZ) was the longest-lived area of volcanism in New Zealand hosting the commencement of large explosive rhyolitic and ignimbrite forming eruptions. The NW trending Coromandel Peninsula is the subaerial remnant of the Miocene-Pliocene CVZ, which is regarded as a tectonic precursor to the Taupo Volcanic Zone (TVZ), currently the most dynamic and voluminous rhyolitic volcanic centre on Earth. This study presents new single glass shard major and trace element geochemical analyses for 72 high-silica volcanic tephra layers recovered from well-dated deep-sea sediments of the SW Pacific Ocean by the Ocean Drilling Program (ODP) Leg 181. ODP Site 1124, ~720 km south and east from the CVZ, penetrated sediments of the Rekohu Drift yielding an unprecedented record of major explosive volcanic eruptions owing to the favourable location and preservation characteristics at this site. This record extends onshore eruptive sequences of CVZ explosive volcanism that are obscured by poor exposure, alteration, and erosion and burial by younger volcanic deposits. Tephra layers recovered from Site 1124 are well-dated through a combination of biostratigraphic and palaeomagnetic methods allowing the temporal geochemical evolution of the CVZ to be reconstructed in relation to changes in the petrogenesis of CVZ arc magmas from ~ 10 to 2 Ma. This thesis establishes major and trace element geochemical "fingerprints" for all Site 1124-C tephras using well-established (wavelength dispersive electron probe microanalysis) and new (laser ablation inductively coupled plasma mass spectrometry) in situ single glass shard microanalytical techniques. Trace element analysis of Site 1124-C glass shards (as small as 20 um) demonstrate that trace element signatures offer a more specific, unequivocal characterisation for distinguishing (and potentially correlating) between tephras with nearly identical major element compositions. The Site 1124-C core contains 72 unaltered Miocene-Pliocene volcanic glass-shard-bearing laminae > 1 cm thick that correspond to 83 or 84 geochemical eruptive units. Revised eruptive frequencies based on the number of geochemical eruptive units identified represent at least one eruption every 99 kyr for the late Miocene and one per 74 kyr for the Pliocene. The frequency of tephra deposition throughout the history of the CVZ has not been constant, rather reflecting pulses of major explosive eruptions resulting in closely clustered groups of tephra separated by periods of reduced activity, relative volcanic quiescence or non-tephra deposition. As more regular activity became prevalent in the Pliocene, it was accompanied by more silicic magma compositions. Rhyolitic volcanic glass shards are characterised by predominantly calc-alkaline and minor high-K enriched major element compositions. Major element compositional variability of the tephras deposited between 10 Ma and 2 Ma reveals magma batches with pre-eruptive compositional gradients implying a broad control by fractional crystallisation. Trace element characterisation of glass shards reveals the role of magmatic processes that are not readily apparent in the relatively homogeneous major element compositions. Multi-element diagrams show prominent negative Sr and Ti anomalies against primitive mantle likely caused by various degrees of plagioclase and titanomagnetite fractional crystallisation in shallow magma chambers. Relative Nb depletion, characteristic of arc volcanism, is moderate in CVZ tephras. HFSEs (e.g. Nb, Zr, Ti) and HREEs (e.g. Yb, Lu) remain immobile during slab fluid flux suggesting they are derived from the mantle wedge. LILE (e.g. Rb, Cs, Ba, Sr) and LREE (e.g. La, Ce) enrichments are consistent with slab fluid contribution. B/La and Li/Y ratios can be used as a proxy for the flux of subducting material to the mantle wedge, they suggest there is a strong influence from this component in the generation of CVZ arc magmas, potentially inducing melting. CVZ tephra show long-term coherent variability in trace element geochemistry. Post ~ 4 Ma tephras display a more consistent, less variable, chemical fingerprint that persists up to and across the CVZ/TVZ transition at ~ 2 Ma. Initiation of TVZ volcanism may have occurred earlier than is presently considered, or CVZ to TVZ volcanism may have occurred without significant changes in magma generation processes.</p>


Clay Minerals ◽  
1986 ◽  
Vol 21 (3) ◽  
pp. 401-415 ◽  
Author(s):  
H. Noro

AbstractXRD analysis and electron microscopy show that hexagonal platy halloysite is the main component of an altered tuff (Ueno tuff bed) in the Pliocene Seto group, Aichi Prefecture, Central Japan. In the natural state it shows a single basal peak at 10·1 Å, which collapses to 7·2 Å, by dehydration through a segregate-type interstratification. The (02,11) non-basal band consists of slightly separated peaks which indicates moderate ordering of the crystal structure. The b-dimension is 8·936–8·939 Å. The stability of the interlayer water is intermediate with respect to halloysites of different morphologies. Between 3·5 and 4% Fe2O3 is present in the deferrated sample and the calculated chemical formula can not explain the anomalously high CEC of 21·9 mEq/100 g. Because the curvature radius and b-dimension of halloysite increase with increase in Fe2O3 content, the platy morphology is ascribed to replacement of Al3+ by Fe3+ in the octahedral sheet. Based on the geological and chemical data, the hexagonal platy halloysite is considered to have been formed from volcanic glass after deposition in a freshwater lake, where conditions were oxidizing and weakly acidic.


2017 ◽  
Vol 87 (1) ◽  
pp. 1-23 ◽  
Author(s):  
Magret Damaschke ◽  
Shane J. Cronin ◽  
Katherine A. Holt ◽  
Mark S. Bebbington ◽  
Alan G. Hogg

AbstractTephra layers from 11 sediment cores were examined from a series of closely spaced lake and peat sites, which form an arc around the andesitic stratovolcano Mt. Taranaki, North Island, New Zealand. A new high-resolution composite tephra-deposition record was built, encompassing at least 228 tephra-producing eruptions over the last 30 cal ka BP and providing a basis for understanding variations in magnitude and frequency of explosive volcanism at a typical andesitic volcano. Intersite correlation and geochemical fingerprinting of almost all tephra layers was achieved using electron microprobe–determined titanomagnetite phenocryst and volcanic glass shard compositions, in conjunction with precise age determination of the tephra layers based on continuous down-core radiocarbon dating. Compositional variation within these data allowed the overall eruption record to be divided into six individual tephra sequences. This geochemical/stratigraphic division provides a broad basis for widening correlation to incomplete tephra sequences, with confident correlations to specific, distal Taranaki-derived tephra layers found as far as 270 km from the volcano. Furthermore, this tephrostratigraphical record is one of the most continuous and detailed for an andesitic stratovolcano. It suggests two general patterns of magmatic evolution, characterized by intricate geochemical variations indicating a complex storage and plumbing system beneath the volcano.


2015 ◽  
Vol 12 (4) ◽  
pp. 3505-3545 ◽  
Author(s):  
W. Clymans ◽  
L. Barão ◽  
N. Van der Putten ◽  
S. Wastegård ◽  
G. Gísladóttir ◽  
...  

Abstract. Biogenic silica (BSi) is used as a proxy by soil scientists to identify biological effects on the Si cycle and by paleoecologists to study environmental changes. Alkaline extractions are typically used to measure BSi in both terrestrial and aquatic environments. The dissolution properties of volcanic glass in tephra deposits and their nano-crystalline weathering products are hypothesized to overlap those of BSi, however, data to support this behavior are lacking. The understanding that the Si-bearing fractions that dissolve in alkaline media (SiAlk) do not necessarily correspond to BSi, question the applicability of BSi as a proxy. Here, analysis of 15 samples reported as tephra-containing allows us to reject the hypothesis that tephra constituents produce an identical dissolution signal to that of BSi during alkaline extraction. We found that dissolution of volcanic glass shards is incomplete during alkaline dissolution. Simultaneous measurement of Al and Si used here during alkaline dissolution provides an important parameter to enable us to separate glass shard dissolution from dissolution of BSi and other Si-bearing fractions. The contribution from volcanic glass shard (between 0.2–4 wt.% SiO2), the main constituent of distal tephra, during alkaline dissolution can be substantial depending on the total SiAlk. Hence, soils and lake sediments with low BSi concentrations are highly sensitive to the additional dissolution from tephra constituents and its weathering products. We advise evaluation of the potential for volcanic or other non-biogenic contributions for all types of studies using BSi as an environmental proxy.


2018 ◽  
Vol 89 (2) ◽  
pp. 520-532
Author(s):  
Valerie Menke ◽  
Steffen Kutterolf ◽  
Carina Sievers ◽  
Julie Christin Schindlbeck ◽  
Gerhard Schmiedl

AbstractWe present the first tephroanalysis based on geochemical fingerprinting of volcanic glass shards from eastern Apulian shelf sediments in the Gulf of Taranto (Italy). High sedimentation rates in the gulf are ideal for high-resolution paleoclimate studies, which rely on accurate age models. Cryptotephrostratigraphy is a novel tool for the age assessment of marine sediment cores in the absence of discrete tephra layers. High-resolution quantitative analysis of glass shard abundance in the uppermost 45 cm of a gravity core identified two cryptotephras. Microprobe analysis of glass shards supported by an accelerator mass spectrometry 14C–based age model identified the pronounced primary cryptotephra at 36 cm bsf (below sea floor) as the felsic AD 776 Monte Pilato Eruption on the island of Lipari, whereas the thinner, mafic tephra layer at 1.5 cm bsf is associated with the AD 1944 eruption of Somma-Vesuvius. Identifying these tephra layers provides an additional, 14C-independent, stratigraphic framework for further paleoclimatic studies allowing us to link Mediterranean climate and hydrology to orbital variation and large-scale atmospheric processes. Our results underline the importance of qualitative tephrostratigraphy in a highly geodynamic region, where solely quantitative approaches have demonstrated to bear a high potential for false correlations between tephra layers and eruptions.


Sign in / Sign up

Export Citation Format

Share Document