scholarly journals Occurrence of Acute Myeloid Leukemia in Young Pregnant Women

2008 ◽  
Vol 1 ◽  
pp. CMBD.S823
Author(s):  
Juliane Menezes ◽  
Mariana Emerenciano ◽  
Flávia Pimenta ◽  
Gilson Guedes Filho ◽  
Isis Q. Magalhães ◽  
...  

Although acute leukaemia is rare in pregnancy its importance lies in its life-threatening potential, both to the child and the mother. The possibility of vertical transmission of leukemic cells increases the attention devoted to these patients and their offspring. Three cases of pregnant young women (15-17 years of age) with AML are presented. This series of cases is the first report where gene abnormalities such as ITD mutations of the FLT3 gene and AML1/ETO fusion genes were screened in pregnant AML patients and their babies, so far. Unfortunately, very poor outcomes have been associated to similar cases described in literature, and the same was true to the patients described herein. Although very speculative, we think that the timing and possible similar exposures would be involved in all cases.

2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Naghmeh Niktoreh ◽  
Christiane Walter ◽  
Martin Zimmermann ◽  
Christine von Neuhoff ◽  
Nils von Neuhoff ◽  
...  

Acute myeloid leukemia is a life-threatening malignancy in children and adolescents treated predominantly by risk-adapted intensive chemotherapy that is partly supported by allogeneic stem cell transplantation. Mutations in theWT1gene andNUP98-NSD1fusion are predictors of poor survival outcome/prognosis that frequently occur in combination with internal tandem duplications of the juxta-membrane domain ofFLT3(FLT3-ITD).To re-evaluate the effect of these factors in contemporary protocols, 353 patients (<18 years) treated in Germany with AML-BFM treatment protocols between 2004 and 2017 were included. Presence of mutatedWT1andFLT3-ITDin blasts (n=19) resulted in low 3-year event-free survival of 29% and overall survival of 33% compared to rates of 45-63% and 67-87% in patients with only one (onlyFLT3-ITD; n=33,onlyWT1mutation; n=29) or none of these mutations (n=272). IncludingNUP98-NSD1and high allelic ratio (AR) ofFLT3-ITD(AR ≥0.4) in the analysis revealed very poor outcomes for patients with co-occurrence of all three factors or any of double combinations. All these patients (n=15) experienced events and the probability of overall survival was low (27%). We conclude that co-occurrence ofWT1mutation,NUP98-NSD1,andFLT3-ITDwith an AR ≥0.4 as triple or double mutations still predicts dismal response to contemporary first- and second-line treatment for pediatric acute myeloid leukemia.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3786-3786
Author(s):  
Ting Liu ◽  
Dragana Jankovic ◽  
Laurent Brault ◽  
Sabine Ehret ◽  
Vincenzo Rossi ◽  
...  

Abstract Expression of meningioma 1 (MN1) has been proposed to be a negative prognostic marker in adult acute myeloid leukemia (AML). In pediatric leukemia, we found overexpression of MN1 in 53 of 88 cases: whereas no MN1 expression was detected in T-cell acute lymphoblastic leukemia (T-ALL), significant amounts of MN1 were found in immature B-cell ALL and most cases of infant leukemia. Interestingly, 17 of 19 cases harboring fusion genes involving the mixed-lineage leukemia (MLL-X) gene showed elevated MN1 expression. Lentiviral siRNA mediated MN1 knock-down resulted in cell cycle arrest and impaired clonogenic growth of 3 MLL-X-positive human leukemia cell lines overexpressing MN1 (THP-1, RS4;11, MOLM-13). In a mouse model of MLL-ENL-induced leukemia we found MN1 to be overexpressed as a consequence of provirus integration. Strikingly co-expression of MN1 with MLL-ENL resulted in significantly reduced latency for induction of an AML phenotype in mice suggesting functional cooperation. Immunophenotyping and secondary transplant experiments suggested that MN1 overexpression seems to expand the L-GMP cell population targeted by the MLL-ENL fusion. Gene expression profiling allowed defining a number of potential MN1 hematopoietic targets. Upregulation of CD34, FLT3, HLF, or DLK1 was validated in bone marrow transiently overexpressing MN1, in MN1-induced mouse acute myeloid leukemia, as well as in pediatric leukemias with elevated MN1 levels. Our work shows that MN1 is overexpressed in a significant fraction of pediatric acute leukemia, is essential for growth of leukemic cells, and that MN1 can act as a cooperating oncogene with MLL-ENL most probably through modification of a distinct gene expression program that leads to expansion of a leukemic progenitor population targeted by MLL-fusion genes.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4135-4135
Author(s):  
Maria Paola Martelli ◽  
Lorenzo Brunetti ◽  
Luca De Carolis ◽  
Elisabetta Agliani ◽  
Laura Berchicci ◽  
...  

Abstract Abstract 4135 Acute myeloid leukemia (AML) expressing mutated NPM1 gene and cytoplasmic nucleophosmin (NPMc+ AML) [Falini B et al, NEJM 2005;352:254-266] is a new entity of WHO classification that shows distinctive biological and clinical features. AML with mutated NPM1 usually presents with a high white blood cell count; the bone marrow biopsy is usually markedly hypercellular and leukemic cells frequently show myelomonocytic or monocytic features, with dysplasia and involvement of two or more cell lineages in about 25% of cases. Lack, or low expression, of CD34 in over 90% of cases is the most distinctive immunophenotypic feature of NPM1-mutated AML and is independent of leukemic cell maturation. NPM1 gene mutation without concomitant FLT3-ITD identify a subgroup of AML patients with a favorable prognosis and has been associated with an approximately 50-60% probability of survival at 5 years in younger patients. Here we report 4 out of 41 (10%) patients, admitted at our Hospital in the last year, with new-diagnosed AML with mutated NPM1 presenting with life-threatening thromboembolic (either arterial or venous) events. The main characteristics of these patients are summarized in Table 1. The patients had neither personal nor family history concerning thromboembolism. Hyperleukocytosis was a common feature of the vast majority of NPM1-mutated AML patients at diagnosis. Immunophenotypic analysis did not show a peculiar phenotype in these patients. Table 1 Characteristics of patients with NPM1-mutated AML and thrombosis. Case report no Age Sex (M/F) FAB subtype WBC/mmc Type of thrombosis Site of thrombosis 1 41 F M1 14970 arterial Anterior interventricular branch of left coronary artery 2 56 M M4 93990 arterial external iliac and femoral (right limb) 3 63 M M2 113000 deep venous great saphenous veins (bilateral) 4 73 F M4 190000 deep venous iliac and femoral In two patients (cases 1 and 2), the arterial thromboembolic event (acute myocardial infarction and acute ischemia of right lower limb, respectively) presented about one month before diagnosis of leukemia. In the other 2 patients (cases 3 and 4), deep venous thromboembolism was concomitant with the diagnosis of leukemia. One patient (case 4), who could not initiate chemotherapy for severe concomitant renal failure, died few days after diagnosis. The other patients recovered from the acute event and upon diagnosis of leukemia were promptly treated with standard polychemotherapy which allowed to obtain complete hematological remission associated with complete resolution of the thromboembolic event. The clinical course after chemotherapeutic treatment of the patients outlines the importance and life saving role of early chemotherapy even under adverse circumstances. The pathogenesis of thromboembolic disease in hematological malignancies is complex and multifactorial: tumor cell-derived procoagulant, fibrinolytic or proteolytic factors and inflammatory cytokines affect clotting activation. Other important factors include infectious complications and hyperleukocytosis. However, large vessel thrombosis is a very rare clinical presentation. Our report of severe thromboembolic events at presentation in AML with mutated NPM1 suggests some still unidentified biological features of this leukemia which we are currently investigating. Disclosures: No relevant conflicts of interest to declare.


2020 ◽  
Vol 9 (5) ◽  
pp. 1513 ◽  
Author(s):  
Alice Pievani ◽  
Marta Biondi ◽  
Chiara Tomasoni ◽  
Andrea Biondi ◽  
Marta Serafini

Despite extensive research and development of new treatments, acute myeloid leukemia (AML)-backbone therapy has remained essentially unchanged over the last decades and is frequently associated with poor outcomes. Eradicating the leukemic stem cells (LSCs) is the ultimate challenge in the treatment of AML. Emerging evidence suggests that AML remodels the bone marrow (BM) niche into a leukemia-permissive microenvironment while suppressing normal hematopoiesis. The mechanism of stromal-mediated protection of leukemic cells in the BM is complex and involves many adhesion molecules, chemokines, and cytokines. Targeting these factors may represent a valuable approach to complement existing therapies and overcome microenvironment-mediated drug resistance. Some strategies for dislodging LSCs and leukemic blasts from their protective niche have already been tested in patients and are in different phases of the process of clinical development. Other strategies, such as targeting the stromal cells remodeling processes, remain at pre-clinical stages. Development of humanized xenograft mouse models, which overcome the mismatch between human leukemia cells and the mouse BM niche, is required to generate physiologically relevant, patient-specific human niches in mice that can be used to unravel the role of human AML microenvironment and to carry out preclinical studies for the development of new targeted therapies.


2004 ◽  
Vol 216 (03) ◽  
Author(s):  
C Gall ◽  
T Langer ◽  
M Metzler ◽  
S Viehmann ◽  
J Harbott ◽  
...  

Open Medicine ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. 387-396
Author(s):  
Sing-Ting Wang ◽  
Chieh-Lung Chen ◽  
Shih-Hsin Liang ◽  
Shih-Peng Yeh ◽  
Wen-Chien Cheng

Abstract Pleural effusions are rarely observed in association with acute myeloid leukemia (AML), and their true incidence remains unknown. Given the low diagnostic yield from cytopathologic analysis of malignant pleural effusions and the fact that patients with leukemia are often thrombocytopenic and unable to tolerate invasive procedures, the incidence of leukemic effusions may be underestimated. Here, we report a rare case of pleural effusion in a patient with newly diagnosed AML. Initial analysis revealed an exudative, lymphocyte-predominant effusion. High levels of adenosine deaminase (ADA) were detected in pleural fluid, consistent with a diagnosis of tuberculosis. However, the analysis of pleural cytology revealed leukemic cells, permitting the diagnosis of leukemic effusion to be made. The patient underwent induction chemotherapy and pleural effusion resolved without recurrence. This case emphasizes the diagnostic dilemma presented by high levels of ADA in a leukemic pleural effusion, as this association has not been previously considered in the literature.


Blood ◽  
1995 ◽  
Vol 86 (8) ◽  
pp. 2906-2912 ◽  
Author(s):  
D Haase ◽  
M Feuring-Buske ◽  
S Konemann ◽  
C Fonatsch ◽  
C Troff ◽  
...  

Acute myeloid leukemia (AML) is a heterogenous disease according to morphology, immunophenotype, and genetics. The retained capacity of differentiation is the basis for the phenotypic classification of the bulk population of leukemic blasts and the identification of distinct subpopulations. Within the hierarchy of hematopoietic development and differentiation it is still unknown at which stage the malignant transformation occurs. It was our aim to analyze the potential involvement of cells with the immunophenotype of pluripotent stem cells in the leukemic process by the use of cytogenetic and cell sorting techniques. Cytogenetic analyses of bone marrow aspirates were performed in 13 patients with AML (11 de novo and 2 secondary) and showed karyotype abnormalities in 10 cases [2q+, +4, 6p, t(6:9), 7, +8 in 1 patient each and inv(16) in 4 patients each]. Aliquots of the samples were fractionated by fluorescence-activated cell sorting of CD34+ cells. Two subpopulations, CD34+/CD38-(early hematopoietic stem cells) and CD34+/CD38+ (more mature progenitor cells), were screened for karyotype aberations as a marker for leukemic cells. Clonal abnormalities and evaluable metaphases were found in 8 highly purified CD34+/CD38-populations and in 9 of the CD34+/CD38-specimens, respectively. In the majority of cases (CD34+/CD38-, 6 of 8 informative samples; CD34+/CD38+, 5 of 9 informative samples), the highly purified CD34+ specimens also contained cytogenetically normal cells. Secondary, progression-associated chromosomal changes (+8, 12) were identified in the CD34+/CD38-cells of 2 patients. We conclude that clonal karyotypic abnormalities are frequently found in the stem cell-like (CD34+/CD38-) and more mature (CD34+/CD38+) populations of patients with AML, irrespective of the phenotype of the bulk population of leukemic blasts and of the primary or secondary character of the leukemia. Our data suggest that, in AML, malignant transformation as well as disease progression may occur at the level of CD34+/CD38-cells with multilineage potential.


Sign in / Sign up

Export Citation Format

Share Document