scholarly journals Characterizing Heart Failure in the Ventricular Volume Domain

2015 ◽  
Vol 9s1 ◽  
pp. CMC.S18744 ◽  
Author(s):  
Peter L. M. Kerkhof

Heart failure (HF) may be accompanied by considerable alterations of left ventricular (LV) volume, depending on the particular phenotype. Two major types of HF have been identified, although heterogeneity within each category may be considerable. All variants of HF show substantially elevated LV filling pressures, which tend to induce changes in LV size and shape. Yet, one type of HF is characterized by near-normal values for LV end-diastolic volume (EDV) and even a smaller end-systolic volume (ESV) than in matched groups of persons without cardiac disease. Furthermore, accumulating evidence indicates that, both in terms of shape and size, in men and women, the heart reacts differently to adaptive stimuli as well as to certain pharmacological interventions. Adjustments of ESV and EDV such as in HF patients are associated with (reverse) remodeling mechanisms. Therefore, it is logical to analyze HF subtypes in a graphical representation that relates ESV to EDV. Following this route, one may expect that the two major phenotypes of HF are identified as distinct entities localized in different areas of the LV volume domain. The precise coordinates of this position imply unique characteristics in terms of the actual operating point for LV volume regulation. Evidently, ejection fraction (EF; equal to 1 minus the ratio of ESV and EDV) carries little information within the LV volume representation. Thus far, classification of HF is based on information regarding EF combined with EDV. Our analysis shows that ESV in the two HF groups follows different patterns in dependency of EDV. This observation suggests that a superior HF classification system should primarily be founded on information embodied by ESV.

Author(s):  
Tiantian Shen ◽  
Lin Xia ◽  
Wenliang Dong ◽  
Jiaxue Wang ◽  
Feng Su ◽  
...  

Background: Preclinical and clinical evidence suggests that mesenchymal stem cells (MSCs) may be beneficial in treating heart failure (HF). However, the effects of stem cell therapy in patients with heart failure is an ongoing debate and the safety and efficacy of MSCs therapy is not well-known. We conducted a systematic review of clinical trials that evaluated the safety and efficacy of MSCs for HF. This study aimed to assess the safety and efficacy of MSCs therapy compared to the placebo in heart failure patients. Methods: We searched PubMed, Embase, Cochrane library systematically, with no language restrictions. Randomized controlled trials(RCTs) assessing the influence of MSCs treatment function controlled with placebo in heart failure were included in this analysis. We included RCTs with data on safety and efficacy in patients with heart failure after mesenchymal stem cell transplantation. Two investigators independently searched the articles, extracted data, and assessed the quality of the included studies. Pooled data was performed using the fixed-effect model or random-effect model when it appropriate by use of Review Manager 5.3. The Cochrane risk of bias tool was used to assess bias of included studies. The primary outcome was safety assessed by death and rehospitalization and the secondary outcome was efficacy which was assessed by six-minute walk distance and left ventricular ejection fraction (LVEF),left ventricular end-systolic volume(LVESV),left ventricular end-diastolic volume(LVEDV) and brain natriuretic peptide(BNP) Results: A total of twelve studies were included, involving 823 patients who underwent MSCs or placebo treatment. The overall rate of death showed a trend of reduction of 27% (RR [CI]=0.73 [0.49, 1.09], p=0.12) in the MSCs treatment group. The incidence of rehospitalization was reduced by 47% (RR [CI]=0.53[0.38, 0.75], p=0.0004). The patients in the MSCs treatment group realised an average of 117.01m (MD [95% CI]=117.01m [94.87, 139.14], p<0.00001) improvement in 6MWT.MSCs transplantation significantly improved left ventricular ejection fraction (LVEF) by 5.66 % (MD [95% CI]=5.66 [4.39, 6.92], p<0.00001), decreased left ventricular end-systolic volume (LVESV) by 14.75 ml (MD [95% CI]=-14.75 [-16.18, -12.83], p<0.00001 ) and left ventricular end-diastolic volume (LVEDV) by 5.78 ml (MD [95% CI]=-5.78[-12.00, 0.43], p=0.07 ) ,in the MSCs group , BNP was decreased by 133.51 pg/ml MD [95% CI]= -133.51 [-228.17,-38.85], p=0.54, I2= 0.0%) than did in the placebo group. Conclusions: Our results suggested that mesenchymal stem cells as a regenerative therapeutic approach for heart failure is safe and effective by virtue of their self-renewal potential, vast differentiation capacity and immune modulating properties. Allogenic MSCs have superior therapeutic effects and intracoronary injection is the optimum delivery approach. In the tissue origin, patients who received treatment with umbilical cord MSCs seem more effective than bone marrow MSCs. As to dosage injected, (1-10)*10^8 cells were of better effect.


2021 ◽  
Vol 2114 (1) ◽  
pp. 012006
Author(s):  
M K Mohammed ◽  
S I Essa

Abstract Ischemic heart disease is a major causes of heart failure. Heart failure patients have predominantly left ventricular dysfunction (systolic or diastolic dysfunction, or both). Acute heart failure is most commonly caused by reduced myocardial contractility, and increased LV stiffness. We performed echocardiography and gated SPECT with Tc99m MIBI within 263 patients and 166 normal individuals. Left ventricular end systolic volume (LVESV), left ventricular end diastolic volume (LVEDV), and left ventricular ejection fraction (LVEF) were measured. For all degrees of ischemia, there was a significant difference between ejection fraction values measured by SPECT and echocardiography, and there were no significant differences among end systolic volume and end diastolic volume value calculated by two methods for all cases. The mean value for EDV (ECHO)/EDV (SPECT) was 1.07 ± 0.31 for degree (1, 2); in the degree 3 the mean value was 1.02 ± 0.08, and 1.005 ± 0.07 for degree 4. The mean value for ESV (ECHO)/ESV (SPECT) was 1.08 ± 0.34 for degree (1, 2); while 1.03 ± 0.12, 1.021 ± 0.128 for degree 3 and 4 respectively. This study was showed a good relation between left ventricular size and ejection fraction measured by SPECT with Tc99m, and echocardiography.


2018 ◽  
Vol 14 (1) ◽  
pp. 3-8
Author(s):  
Mohammad Ashraf Hossain ◽  
Khurshed Ahmed ◽  
Md Faisal Ibn Kabir ◽  
Md Fakhrul Islam Khaled ◽  
Rakibul H Rashed ◽  
...  

Background: Chronic heart failure (CHF) is the most common and prognostically unfavorable outcome of many diseases of the cardiovascular system. Recent data suggest that beta-blockers are beneficial in patients with CHF. Among β-blocker class of drugs, bisoprolol is a highly selective β1-adrenergic receptor blocker whereas Carvedilol is non-selective. Many large-scale trials have confirmed that both these β-blockers are superior to placebo and other β-blockers. This study was designed to compare the effects of carvedilol and bisoprolol in patients with chronic HF in a single center.Methods: It was a quasi experimental study. A total of 288 cases of heart failure were selected by purposive sampling, from January 2017 to June 2017. Each patient was allocated into either of the two groups, and was continued receiving treatment with either bisoprolol (Group-I) or carvedilol (Group-II). Each patient was evaluated clinically and echocardiographically at the beginning of treatment (baseline) and at the end of 3rd month. Echocardiography was performed to find out change in left ventricular systolic function.Result: After 3 months of treatment, ejection fraction was found higher in the bisoprolol group (42.6 ± 6.5 versus 38.3 ± 4.6%; P < 0.05). Ejection fraction (EF) changes were 8.4% in bisoprolol group and 4.1% in carvedilol group. A significant reduction in left ventricular end-systolic volume (21.9±2.5 in group I versus 14.9±5.7 in group II; P < 0.05) and left ventricular systolic diameter (3.2±0.1 in group I versus 2.3±0.5 in group II; P<0.05) occurred after 3 months of treatment. But no significant differences were observed in left ventricular end-diastolic volume (10.1±3.2 versus 6.1±6.4; P=0.101) and left ventricular diastolic diameter (1.7±0.8 versus 1.3±0.8; P=0.081) between groups. Three months after treatment, heart rate was reduced in the bisoprolol group from 87.7±9 to 74.5±8.1 and carvedilol group from 88.8±9.1 to 80.1±8.7. Differences in heart rate responses between 2 groups were not statistically significant (P=0.113). Assessment of blood pressure three months later of treatment shows, systolic blood pressure (SBP) and diastolic blood pressure (DBP) were improved in both group but difference between two groups were statistically non significant (p>0.05).Conclusion: In this study, bisoprolol was superior to carvedilol in increasing left-ventricular ejection fraction, improving left ventricular end systolic volume and left ventricular end systolic diameter but no significant difference was observed in LV end diastolic volume, LV end diastolic diameter, heart rate and blood pressure.University Heart Journal Vol. 14, No. 1, Jan 2018; 3-8


Author(s):  
Serenella Castelvecchio ◽  
Raffaella Molfetta ◽  
Andrea Garatti ◽  
Lorenzo Menicanti

The increase in left ventricular volume after a myocardial infarction is a component of the remodelling process leading to heart failure and it is associated with poor clinical outcomes. Hence, the current management strategy for ischaemic left ventricular dysfunction has been aimed to reverse the remodelling process by medical therapy, devices and/or surgical strategies. Surgical ventricular reconstruction, usually combined with myocardial revascularization, has been introduced as an optional therapeutic strategy aimed to reduce the left ventricle through the exclusion of the scar tissue. Surgical ventricular reconstruction is recommended in selected heart failure patients, especially if a postoperative left ventricular end-systolic volume index less than 70 mL/m2 can be predictably achieved, because a smaller residual volume is associated with improved survival. This chapter briefly discusses the rationale to surgically reverse left ventricular remodelling, the technique, and the indications to the best of the authors’ knowledge, coming from one of the centres with the most experience in SVR worldwide.


2008 ◽  
Vol 295 (6) ◽  
pp. H2475-H2482 ◽  
Author(s):  
Sharad Rastogi ◽  
Makoto Imai ◽  
Victor G. Sharov ◽  
Sudhish Mishra ◽  
Hani N. Sabbah

In anemic patients with heart failure (HF), erythropoietin-type drugs can elicit clinical improvement. This study examined the effects of chronic monotherapy with darbepoetin-α (DARB) on left ventricular (LV) function and remodeling in nonanemic dogs with advanced HF. HF [LV ejection fraction (EF) ∼25%] was produced in 14 dogs by intracoronary microembolizations. Dogs were randomized to once a week subcutaneous injection of DARB (1.0 μg/kg, n = 7) or to no therapy (HF, n = 7). All procedures were performed during cardiac catheterization under general anesthesia and under sterile conditions. LV end-diastolic volume (EDV), end-systolic volume (ESV), and EF were measured before the initiation of therapy and at the end of 3 mo of therapy. mRNA and protein expression of caspase-3, hypoxia inducible factor-1α, and the bone marrow-derived stem cell marker c-Kit were determined in LV tissue. In HF dogs, EDV and ESV increased and EF decreased after 3 mo of followup. Treatment with DARB prevented the increase in EDV, decreased ESV, and increased EF. DARB therapy also normalized the expression of HIF-1α and active caspase-3 and enhanced the expression of c-Kit. We conclude that chronic monotherapy with DARB prevents progressive LV dysfunction and dilation in nonanemic dogs with advanced HF. These results suggest that DARB elicits beneficial effects in HF that are independent of the presence of anemia.


Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1362
Author(s):  
Simona Manole ◽  
Claudia Budurea ◽  
Sorin Pop ◽  
Alin M. Iliescu ◽  
Cristiana A. Ciortea ◽  
...  

Aims: We aimed to compare cardiac volumes measured with echocardiography (echo) and cardiac magnetic resonance imaging (MRI) in a mixed cohort of healthy controls (controls) and patients with atrial fibrillation (AF). Materials and methods: In total, 123 subjects were included in our study; 99 full datasets were analyzed. All the participants underwent clinical evaluation, EKG, echo, and cardiac MRI acquisition. Participants with full clinical data were grouped into 63 AF patients and 36 controls for calculation of left atrial volume (LA Vol) and 51 AF patients and 30 controls for calculation of left ventricular end-diastolic volume (LV EDV), end-systolic volume (ESV), and LV ejection fraction (LV EF). Results: No significant differences in LA Vol were observed (p > 0.05) when measured by either echo or MRI. However, echo provided significantly lower values for left ventricular volume (p < 0.0001). The echo LA Vol of all the subjects correlated well with that measured by MRI (Spearmen correlation coefficient r = 0.83, p < 0.0001). When comparing the two methods, significant positive correlations of EDV (all subjects: r = 0.55; Controls: r = 0.71; and AF patients: r = 0.51) and ESV (all subjects: r = 0.62; Controls: r = 0.47; and AF patients: r = 0.66) were found, with a negative bias for values determined using echo. For a subgroup of participants with ventricular volumes smaller than 49.50 mL, this bias was missing, thus in this case echocardiography could be used as an alternative for MRI. Conclusion: Good correlation and reduced bias were observed for LA Vol and EF determined by echo as compared to cardiac MRI in a mixed cohort of patients with AF and healthy volunteers. For the determination of volume values below 49.50 mL, an excellent correlation was observed between values obtained using echo and MRI, with comparatively reduced bias for the volumes determined by echo. Therefore, in certain cases, echocardiography could be used as a less expensive, less time-consuming, and contraindication free alternative to MRI for cardiac volume determination.


2008 ◽  
Vol 295 (2) ◽  
pp. H640-H646 ◽  
Author(s):  
Borut Kirn ◽  
Annemieke Jansen ◽  
Frank Bracke ◽  
Berry van Gelder ◽  
Theo Arts ◽  
...  

By current guidelines a considerable part of the patients selected for cardiac resynchronization therapy (CRT) do not respond to the therapy. We hypothesized that mechanical discoordination [opposite strain within the left ventricular (LV) wall] predicts reversal of LV remodeling upon CRT better than mechanical dyssynchrony. MRI tagging images were acquired in CRT candidates ( n = 19) and in healthy control subjects ( n = 9). Circumferential strain (εcc) was determined in 160 regions. From εcc signals we derived 1) an index of mechanical discoordination [internal stretch fraction (ISF), defined as the ratio of stretch to shortening during ejection] and 2) indexes of mechanical dyssynchrony: the 10–90% width of time to onset of shortening, time to peak shortening, and end-systolic strain. LV end-diastolic volume (LVEDV), end-systolic volume (LVESV), and ejection fraction (LVEF) were determined before and after 3 mo of CRT. Responders were defined as those patients in whom LVESV decreased by >15%. In responders ( n = 10), CRT increased LVEF and decreased LVEDV and LVESV (11 ± 6%, 21 ± 16%, and 30 ± 16%, respectively) significantly more ( P < 0.05) than in nonresponders (1 ± 6%, 3 ± 4%, and 5 ± 10%, respectively). Among mechanical indexes, only ISF was different between responders and nonresponders (0.53 ± 0.25 vs. 0.31 ± 0.16; P < 0.05). In patients with ISF >0.4 ( n = 10), LVESV decreased by 31 ± 18% vs. 5 ± 11% in patients with ISF <0.4 ( P < 0.05). We conclude that mechanical discoordination, as estimated from ISF, is a better predictor of reverse remodeling after CRT than differences in time to onset and time to peak shortening. Therefore, discoordination rather than dyssynchrony appears to reflect the reserve contractile capacity that can be recruited by CRT.


1995 ◽  
Vol 268 (4) ◽  
pp. H1490-H1498 ◽  
Author(s):  
R. S. Szwarc ◽  
D. Laurent ◽  
P. R. Allegrini ◽  
H. A. Ball

The conductance catheter gain factor, alpha, is usually determined by an independent measure of stroke volume and, as such, is assumed to be constant. However, nonlinearity of the conductance-volume relation has been proposed on theoretical grounds. The present study was designed to establish the extent of nonlinearity, or variability of alpha, within the cardiac cycle using magnetic resonance imaging (MRI) as the reference method. Pentobarbital-anesthetized minipigs (n = 10, 10–13 kg) were instrumented with left ventricular (LV) conductance and Millar catheters. Conductance catheter signals were recorded, and volumes were corrected for parallel conductance using a saline-dilution technique. Animals were then placed in a 4.7-T magnet, and first time derivative of LV pressure-gated transverse MRI images (5-mm slices) acquired during isovolumic contraction (end diastole) and relaxation (end systole). LV cavity volumes were then determined using a third-order polynomial model. The gain alpha was computed three ways: by dividing conductance stroke volume by MRI stroke volume (alpha SV), by dividing conductance end-diastolic volume by MRI end-diastolic volume (alpha ED), and by dividing conductance end-systolic volume by MRI end-systolic volume (alpha ES). alpha SV was 0.62 +/- 0.15, with alpha ED (0.71 +/- 0.17) significantly lower than alpha ES (0.81 +/- 0.21; P < 0.001). Using alpha SV to adjust conductance gain (i.e., assuming constant gain) resulted in a significantly larger end-diastolic volume (25.8 +/- 4.6 ml) and smaller ejection fraction (46.8 +/- 7.2%) than those obtained with MRI (23.0 +/- 4.1 ml and 53.1 +/- 7.3%, respectively; P < 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)


1992 ◽  
Vol 73 (5) ◽  
pp. 2097-2104 ◽  
Author(s):  
K. F. Adams ◽  
S. M. McAllister ◽  
H. el-Ashmawy ◽  
S. Atkinson ◽  
G. Koch ◽  
...  

To better characterize the relationship between left ventricular volume response and improved ventricular ejection and output during supine exercise in normal subjects, 36 healthy asymptomatic volunteers (age 39 +/- 17 yr) were studied with radionuclide ventriculography during recumbent bicycle ergometry. Relative changes in left ventricular end-diastolic and end-systolic volume were measured at rest and during exercise by a modification of the radionuclide counts-based method that accounted for variability in stress blood pool counts. A biphasic response was noted in left ventricular end-diastolic volume with an initial increase in early exercise (8.5 +/- 11% at 200 kpm/min and 11 +/- 12% at 300 kpm/min) followed by a progressive and significant decline at peak exercise (-3.3 +/- 18% at 547 +/- 140 kpm/min; P < 0.05). There was substantial variation in end-diastolic volume response at peak exercise in the group as a whole, which could be more closely related to changes in end-systolic volume (r = 0.84, P < 0.0001) than in heart rate (r = -0.57, P < 0.01) or age (r = 0.36, P < 0.05) of the study subjects. Despite the decline in ventricular filling, systolic function appeared to improve dramatically at peak exercise (change in left ventricular ejection fraction 15.5 +/- 6.4, P < 0.0001). Although not directly related to increasing systolic ejection, end-diastolic volume was directly related to the percent change in stroke volume at peak exercise among the study subjects (r = 0.88, P < 0.0001).(ABSTRACT TRUNCATED AT 250 WORDS)


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Shingo Ota ◽  
Makoto Orii ◽  
Tsuyoshi Nishiguchi ◽  
Mao Yokoyama ◽  
Ryoko Matsushita ◽  
...  

Abstract Background Non-ischemic cardiomyopathy (NICM) is a heterogeneous disease, and its prognosis varies. Although late gadolinium enhancement (LGE)-cardiovascular magnetic resonance (CMR) demonstrates a linear pattern in the mid-wall of the septum or multiple LGE lesions in patients with NICM, the therapeutic response and prognosis of multiple LGE lesions have not been elucidated. This study aimed to investigate the frequency of left ventricular (LV) reverse remodeling (LVRR) and prognosis in patients with NICM who have multiple LGE lesions. Methods This single-center retrospective study included 101 consecutive patients with NICM who were divided into 3 groups according to LGE-CMR results: patients without LGE (no LGE group = 48 patients), patients with a typical mid-wall LGE pattern (n = 29 patients), and patients with multiple LGE lesions (n = 24 patients). LVRR was defined as an increase in LV ejection fraction (LVEF) ≥ 10 % and a final value of LVEF > 35 %, which was accompanied by a decrease in LV end-systolic volume ≥ 15 % at 12-month follow-up using echocardiography. The frequency of composite cardiac events, defined as sudden cardiac death (SCD), aborted SCD (non-fatal ventricular fibrillation, sustained ventricular tachycardia, or adequate implantable cardioverter-defibrillator therapies), and heart failure death or hospitalization for worsening heart failure, were summarized and compared between the groups. Results Among the 3 groups, the frequency of LVRR was significantly lower in the multiple lesions group than in the no LGE and mid-wall groups (no LGE vs. mid-wall vs. multiple lesions: 49 % vs. 52 % vs. 19 %, p = 0.03). There were 24 composite cardiac events among the patients: 2 in patients without LGE (hospitalization for worsening heart failure; 2), 7 in patients of the mid-wall group (SCD; 1, aborted SCD; 1 and hospitalization for worsening heart failure; 5), and 15 in patients of the multiple lesions group (SCD; 1, aborted SCD; 8 and hospitalization for worsening heart failure; 6). The multiple LGE lesions was an independent predictor of composite cardiac events (hazard ratio: 11.40 [95 % confidence intervals: 1.49−92.01], p = 0.020). Conclusions Patients with multiple LGE lesions have a higher risk of cardiac events and poorer LVRR. The LGE pattern may be useful for an improved risk stratification in patients with NICM.


Sign in / Sign up

Export Citation Format

Share Document