scholarly journals Surface- and deep-water hydrography and meltwater events in the mid-latitude North Atlantic Ocean over the past 160,000 years

10.4138/1976 ◽  
2001 ◽  
Vol 37 (2) ◽  
Author(s):  
Myong-Ho Park ◽  
Thorsten Kiefer ◽  
Rainer Zahn
1993 ◽  
Vol 71 (5) ◽  
pp. 997-1002 ◽  
Author(s):  
Dale R. Calder

Bougainvillia aberrans n.sp. is described from Bermuda in the western North Atlantic Ocean. Specimens were collected at a depth of 150 fathoms (274 m) from the polypropylene buoy line of a crab trap. The hydroid colony of B. aberrans is erect, with a polysiphonic hydrocaulus, a smooth to somewhat wrinkled perisarc, hydranths having a maximum of about 16 tentacles, and medusa buds arising only from hydranth pedicels. Medusae liberated in the laboratory from these hydroids differ from all other known species of the genus in having a long, spindle-shaped manubrium, lacking oral tentacles, having marginal tentacles reduced to mere stubs, and being very short-lived (surviving for a few hours at most). Gonads develop in medusa buds while they are still attached to the hydroids, and gametes are shed either prior to liberation of the medusae or shortly thereafter. The eggs are surrounded by an envelope bearing nematocysts (heterotrichous microbasic euryteles). The cnidome of both hydroid and medusa stages consists of desmonemes and heterotrichous microbasic euryteles. The diagnosis of the genus Bougainvillia is modified to accommodate this new deep-water species.


2012 ◽  
Vol 81 (3) ◽  
pp. 1133-1137 ◽  
Author(s):  
R. P. Vieira ◽  
B. Christiansen ◽  
S. Christiansen ◽  
J. M. S. Gonçalves

2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Nicholas Robert Bates ◽  
Rodney J. Johnson

Abstract Ocean chemical and physical conditions are changing. Here we show decadal variability and recent acceleration of surface warming, salinification, deoxygenation, carbon dioxide (CO2) and acidification in the subtropical North Atlantic Ocean (Bermuda Atlantic Time-series Study site; 1980s to present). Surface temperatures and salinity exhibited interdecadal variability, increased by ~0.85 °C (with recent warming of 1.2 °C) and 0.12, respectively, while dissolved oxygen levels decreased by ~8% (~2% per decade). Concurrently, seawater DIC, fCO2 (fugacity of CO2) and anthropogenic CO2 increased by ~8%, 22%, and 72% respectively. The winter versus summer fCO2 difference increased by 4 to 8 µatm decade−1 due to seasonally divergent thermal and alkalinity changes. Ocean pH declined by 0.07 (~17% increase in acidity) and other acidification indicators by ~10%. Over the past nearly forty years, the highest increase in ocean CO2 and ocean acidification occurred during decades of weakest atmospheric CO2 growth and vice versa.


2015 ◽  
Vol 42 (2) ◽  
pp. 316-322 ◽  
Author(s):  
Éric Beucler ◽  
Antoine Mocquet ◽  
Martin Schimmel ◽  
Sébastien Chevrot ◽  
Olivier Quillard ◽  
...  

Nature ◽  
2002 ◽  
Vol 416 (6883) ◽  
pp. 832-837 ◽  
Author(s):  
Bob Dickson ◽  
Igor Yashayaev ◽  
Jens Meincke ◽  
Bill Turrell ◽  
Stephen Dye ◽  
...  

2018 ◽  
Vol 15 (18) ◽  
pp. 5663-5676 ◽  
Author(s):  
Jill N. Sutton ◽  
Gregory F. de Souza ◽  
Maribel I. García-Ibáñez ◽  
Christina L. De La Rocha

Abstract. The stable isotope composition of dissolved silicon in seawater (δ30SiDSi) was examined at 10 stations along the GEOVIDE section (GEOTRACES GA-01), spanning the North Atlantic Ocean (40–60∘ N) and Labrador Sea. Variations in δ30SiDSi below 500 m were closely tied to the distribution of water masses. Higher δ30SiDSi values are associated with intermediate and deep water masses of northern Atlantic or Arctic Ocean origin, whilst lower δ30SiDSi values are associated with DSi-rich waters sourced ultimately from the Southern Ocean. Correspondingly, the lowest δ30SiDSi values were observed in the deep and abyssal eastern North Atlantic, where dense southern-sourced waters dominate. The extent to which the spreading of water masses influences the δ30SiDSi distribution is marked clearly by Labrador Sea Water (LSW), whose high δ30SiDSi signature is visible not only within its region of formation within the Labrador and Irminger seas, but also throughout the mid-depth western and eastern North Atlantic Ocean. Both δ30SiDSi and hydrographic parameters document the circulation of LSW into the eastern North Atlantic, where it overlies southern-sourced Lower Deep Water. The GEOVIDE δ30SiDSi distribution thus provides a clear view of the direct interaction between subpolar/polar water masses of northern and southern origin, and allow examination of the extent to which these far-field signals influence the local δ30SiDSi distribution.


Nature ◽  
1980 ◽  
Vol 286 (5772) ◽  
pp. 479-482 ◽  
Author(s):  
Jean-Claude Duplessy ◽  
J. Moyes ◽  
C. Pujol

Sign in / Sign up

Export Citation Format

Share Document