Deep water formation in the North Atlantic Ocean during the last ice age

Nature ◽  
1980 ◽  
Vol 286 (5772) ◽  
pp. 479-482 ◽  
Author(s):  
Jean-Claude Duplessy ◽  
J. Moyes ◽  
C. Pujol
2017 ◽  
Vol 13 (4) ◽  
pp. 317-331 ◽  
Author(s):  
Montserrat Alonso-Garcia ◽  
Helga (Kikki) F. Kleiven ◽  
Jerry F. McManus ◽  
Paola Moffa-Sanchez ◽  
Wallace S. Broecker ◽  
...  

Abstract. Arctic freshwater discharges to the Labrador Sea from melting glaciers and sea ice can have a large impact on ocean circulation dynamics in the North Atlantic, modifying climate and deep water formation in this region. In this study, we present for the first time a high resolution record of ice rafting in the Labrador Sea over the last millennium to assess the effects of freshwater discharges in this region on ocean circulation and climate. The occurrence of ice-rafted debris (IRD) in the Labrador Sea was studied using sediments from Site GS06-144-03 (57.29° N, 48.37° W; 3432 m water depth). IRD from the fraction 63–150 µm shows particularly high concentrations during the intervals  ∼  AD 1000–1100,  ∼  1150–1250,  ∼  1400–1450,  ∼  1650–1700 and  ∼  1750–1800. The first two intervals occurred during the Medieval Climate Anomaly (MCA), whereas the others took place within the Little Ice Age (LIA). Mineralogical identification indicates that the main IRD source during the MCA was SE Greenland. In contrast, the concentration and relative abundance of hematite-stained grains reflects an increase in the contribution of Arctic ice during the LIA. The comparison of our Labrador Sea IRD records with other climate proxies from the subpolar North Atlantic allowed us to propose a sequence of processes that led to the cooling that occurred during the LIA, particularly in the Northern Hemisphere. This study reveals that the warm climate of the MCA may have enhanced iceberg calving along the SE Greenland coast and, as a result, freshened the subpolar gyre (SPG). Consequently, SPG circulation switched to a weaker mode and reduced convection in the Labrador Sea, decreasing its contribution to the North Atlantic deep water formation and, thus, reducing the amount of heat transported to high latitudes. This situation of weak SPG circulation may have made the North Atlantic climate more unstable, inducing a state in which external forcings (e.g. reduced solar irradiance and volcanic eruptions) could easily drive periods of severe cold conditions in Europe and the North Atlantic like the LIA. This analysis indicates that a freshening of the SPG may play a crucial role in the development of cold events during the Holocene, which may be of key importance for predictions about future climate.


2012 ◽  
Vol 81 (3) ◽  
pp. 1133-1137 ◽  
Author(s):  
R. P. Vieira ◽  
B. Christiansen ◽  
S. Christiansen ◽  
J. M. S. Gonçalves

1998 ◽  
Vol 18 (3-4) ◽  
pp. 113-128 ◽  
Author(s):  
Zhengtang Guo ◽  
Tungsheng Liu ◽  
Nicolas Fedoroff ◽  
Lanying Wei ◽  
Zhongli Ding ◽  
...  

2015 ◽  
Vol 42 (2) ◽  
pp. 316-322 ◽  
Author(s):  
Éric Beucler ◽  
Antoine Mocquet ◽  
Martin Schimmel ◽  
Sébastien Chevrot ◽  
Olivier Quillard ◽  
...  

2018 ◽  
Vol 15 (18) ◽  
pp. 5663-5676 ◽  
Author(s):  
Jill N. Sutton ◽  
Gregory F. de Souza ◽  
Maribel I. García-Ibáñez ◽  
Christina L. De La Rocha

Abstract. The stable isotope composition of dissolved silicon in seawater (δ30SiDSi) was examined at 10 stations along the GEOVIDE section (GEOTRACES GA-01), spanning the North Atlantic Ocean (40–60∘ N) and Labrador Sea. Variations in δ30SiDSi below 500 m were closely tied to the distribution of water masses. Higher δ30SiDSi values are associated with intermediate and deep water masses of northern Atlantic or Arctic Ocean origin, whilst lower δ30SiDSi values are associated with DSi-rich waters sourced ultimately from the Southern Ocean. Correspondingly, the lowest δ30SiDSi values were observed in the deep and abyssal eastern North Atlantic, where dense southern-sourced waters dominate. The extent to which the spreading of water masses influences the δ30SiDSi distribution is marked clearly by Labrador Sea Water (LSW), whose high δ30SiDSi signature is visible not only within its region of formation within the Labrador and Irminger seas, but also throughout the mid-depth western and eastern North Atlantic Ocean. Both δ30SiDSi and hydrographic parameters document the circulation of LSW into the eastern North Atlantic, where it overlies southern-sourced Lower Deep Water. The GEOVIDE δ30SiDSi distribution thus provides a clear view of the direct interaction between subpolar/polar water masses of northern and southern origin, and allow examination of the extent to which these far-field signals influence the local δ30SiDSi distribution.


Sign in / Sign up

Export Citation Format

Share Document