Use of sodium bicarbonate, offered free choice or blended into the ration, to reduce the risk of ruminal acidosis in cattle

2006 ◽  
Vol 86 (3) ◽  
pp. 429-437 ◽  
Author(s):  
Laura J Paton ◽  
Karen A Beauchemin ◽  
Douglas M Veira ◽  
Marina A. G. von Keyserlingk

A study was conducted to determine whether feeding sodium bicarbonate (SB) reduces the risk of subacute ruminal acidosis in cattle fed high concentrate feedlot finishing diets. The experiment was conducted as a replicated 3 × 3 Latin square design with two squares and 2-wk periods. Three mature, non-lactating Holstein cows were allocated to square 1 and three mature Jersey steers were allocated to square 2. The cattle were ruminally cannulated and gradually adapted to a high concentrate diet before starting the experiment. The basal diet contained approximately 80% stream-rolled barley, on a dry matter (DM) basis, and was offered for ad libitum intake. Treatments were: control (no SB), control diet with cattle given free choice access to a SB mixture consisting of 70% SB and 30% dried molasses (free choice SB), and control diet supplemented with SB (7 g SB kg-1 DM; mixed SB). Ruminal pH was measured at the end of each 14-d period for 3 continuous days using an indwelling pH system. Dry matter intake (DMI) was not affected by treatment. However, SB intake depended upon type of cattle and method of provision (P = 0.04); cows had higher SB intake when it was mixed into the diet (57.8 vs. 17.4 g d-1), whereas steers had higher SB intake when SB was provided free choice (129.1 vs. 56.1 g d-1). Ruminal pH characteristics (mean, maximum, minimum, hours, and area under a threshold pH of 5.8 or 5.5) were not affected by treatment. Although neither method of delivering SB reduced the total time each day that pH was below the pH thresholds used to indicate subacute ruminal acidosis, the number of long (> 4 h) continuous bouts of acidosis (pH ≤ 5.8) was reduced (P = 0.01) when SB was mixed into the ration compared with the control. When offered free choice, intake of SB was highly variable among animals and from day-to-day and was inversely correlated to DMI. However, there was no correlation between SB intake and ruminal pH indicating that, when given the opportunity, cattle did not select SB to help prevent ruminal acidosis. Providing SB, either free choice or mixed into the ration, did not eliminate subacute ruminal acidosis in cattle fed high-grain diets. However, mixing SB into the ration reduced the number of long bouts of ruminal acidosis, which could potentially reduce the negative consequences of ruminal acidosis on feed digestion. Key words: Acidosis, beef cattle, high-grain diets, ruminal pH, sodium bicarbonate

Animals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 21
Author(s):  
Natalia Sato Minami ◽  
Rejane Santos Sousa ◽  
Francisco Leonardo Costa Oliveira ◽  
Mailson Rennan Borges Dias ◽  
Débora Aparecida Cassiano ◽  
...  

We evaluated the clinical aspects and feeding behavior of cattle with subacute ruminal acidosis (SARA) caused by short-chain fatty acids (SCFAs). Ten healthy Nelore heifers were subjected to an adjusted SARA induction protocol using citrus pulp (CP). Clinical examinations were performed at baseline and at 3, 6, 9, 12, 15, 18, and 24 h intervals after induction, with ruminal fluid, blood, and feces sampling. The animals’ feeding behavior was evaluated on, before, and for 3 days after SARA by observing the animals every 5 min for 24 h. The dry matter intake (DMI) was recorded daily. The ruminal pH during SARA was always lower than baseline, with an acidotic duration of 547 ± 215 min, a minimum pH of 5.38 ± 0.16, and an average pH of 5.62 ± 0.1. SARA was mainly caused by SCFAs (maximum 118.4 ± 9.3 mmol/L), with the production of l-lactic acids (7.17 mmol/L) and d-lactic acids (0.56 mmol/L) 6 h after the experiment began. The DMI was reduced by 66% and 48% on days 1 and 2, respectively, and returned to normal levels on day 3. SARA caused a reduction in feed intake and rumination time, as well as an increase in the time spent in decubitus on days 1 and 2. These results were influenced by the ruminal pH, ruminal movement, and osmolarity. Furthermore, SARA caused different degrees of depression, which became more pronounced with higher ruminal lactic acid concentrations.


2011 ◽  
Vol 91 (2) ◽  
pp. 323-330 ◽  
Author(s):  
S. Li ◽  
E. Khafipour ◽  
D. O. Krause ◽  
L. A. González ◽  
J. C. Plaizier

Li, S., Khafipour, E., Krause, D. O., González, L. A. and Plaizier, J. C. 2011. Effects of grain-pellet and alfalfa-pellet subacute ruminal acidosis (SARA) challenges on feeding behaviour of lactating dairy cows. Can. J. Anim. Sci. 91: 323–330. The effects of two nutritional challenges aimed at inducing subacute ruminal acidosis (SARA) on the feeding behaviour of lactating dairy cows were investigated in two separate experiments. Both experiments included eight tie-stall-housed cows that were fed once daily. Feeding behaviour of individual cows was monitored by continuously weighing the feed in the mangers. In each experiment, ruminal pH was monitored in four rumen cannulated cows. In the first experiment, cows received a control diet containing 50% mixed concentrate and 50% alfalfa and barley silage (DM basis) during weeks 1 to 5 of two subsequent 6-wk periods. During week 6 of both periods, a grain-pellet SARA challenge (GPSC) was conducted by replacing 21% of DM of the basal diet with wheat-barley pellets. Data obtained in week 4 were taken as a control. In the second experiment, cows received a control diet containing 50% of DM as mixed concentrate and 50% of DM as chopped alfalfa hay during the first week of a 5-wk period. Between week 2 and week 5, an alfalfa-pellet SARA challenge (APSC) was conducted by replacing alfalfa hay in the control diet with alfalfa pellets at a rate of 8% per week. Week 1 and week 5 were considered as the control and SARA challenge, respectively. In the first experiment, the GPSC reduced the meal duration from 48.9 to 38.6 min meal−1 and the eating time from 6.7 to 5.5 h d−1. Meal criteria, meal frequency, meal size, and eating rate were not affected. In the second experiment, the APSC did not affect the meal criterion, meal duration, and eating time per day, but increased dry matter intake from 18.7 to 24.3 kg d−1, meal frequency from 8.2 to 9.4 meals d−1, meals size from 2.4 to 2.7 kg DM, and eating rate from 54.8 to 67.6 g DM min−1. The duration of the first meal after feed delivery was reduced from 154.5 to 103.6 min by the GPSC and from 146.7 to 112.2 min by the APSC. This reduction in the duration of the first meal was accompanied by a reduction in the drop of the ruminal pH during the GPSC, but not during the APSC. Only the APSC increased eating rate of the first meal. Other parameters of this first meal were not affected by both challenges.


2012 ◽  
Vol 92 (3) ◽  
pp. 353-364 ◽  
Author(s):  
S. Li ◽  
G. N. Gozho ◽  
N. Gakhar ◽  
E. Khafipour ◽  
D. O. Krause ◽  
...  

Li, S., Gozho, G. N., Gakhar, N., Khafipour, E., Krause, D. O. and Plaizier, J. C. 2012. Evaluation of diagnostic measures for subacute ruminal acidosis in dairy cows. Can J. Anim. Sci. 92: 353–364. Effects of subacute ruminal acidosis (SARA) challenges on measurements of feces, urine, milk and blood samples, and of feeding behavior were investigated to determine which of these measurements may aid in the diagnosis of SARA. Eight multiparous lactating dairy cows were used in a crossover design with two 6-wk experimental periods. During weeks 1, 2, and 6, cows received a control diet with a forage-to-concentrate ratio of 58:42. During weeks 3 to wk 5, a grain-based SARA challenge (GBSC) or an alfalfa-pellet SARA challenge (APSC) was conducted by replacing 12% of the dry matter of the control ration with pellets containing 50% ground wheat and 50% ground barley, and by replacing 26% of the dry matter of the control ration with pellets of ground alfalfa, respectively. The rumen pH depression did not differ between the challenges. The GBSC increased the concentrations of lipopolysaccharide (LPS) in feces and of serum amyloid A in blood, but decreased that of milk fat and urea in blood. The APSC increased the urine pH, the net-acid-base excretion, and the red blood cell count and potassium concentration in blood. Both challenges increased the concentrations of LPS and propionate in rumen fluid, protein in milk, glucose, lactate and sodium and the partial pressure of CO2in blood, and tended to decrease the concentration of chloride in blood. The measures that were similarly affected by both challenges may aid in the diagnosis of a rumen pH depression. Differences between the SARA challenges suggest that this disorder is not solely rumen pH dependent.


2013 ◽  
Vol 16 (4) ◽  
pp. 813-821
Author(s):  
A.M. Brzozowska ◽  
K. Słoniewski ◽  
J. Oprządek ◽  
P. Sobiech ◽  
Z.M. Kowalski

Abstract One of the largest challenges for the dairy industry is to provide cows with a diet which is highly energetic but does not negatively affect their rumens’ functions. In highly productive dairy cows, feeding diets rich in readily fermentable carbohydrates provides energy precursors needed for maximum milk production, but simultaneously decreases ruminal pH, leading to a widespread prevalence of subacute ruminal acidosis. Maximizing milk production without triggering rumen acidosis still challenges dairy farmers, who try to prevent prolonged bouts of low ruminal pH mainly by proper nutrition and management practices. The animals try to avoid overeating fermentable feeds, as it causes negative consequences by disturbing digestive processes. The results of several experiments show that ruminants, including sheep and beef cattle, are able to modify some aspects of feeding behaviour in order to adjust nutrient intake to their needs and simultaneously prevent physiological disturbances. Particularly, such changes (e.g., increased preference for fibrous feeds, reduced intake of concentrates) were observed in animals, which were trying to prevent the excessive drop of rumen fluid pH. Thanks to a specific mechanism called “the postingestive feedback”, animals should be able to work out such a balance in intake, so they do not suffer either from hunger or from negative effects of over-ingesting the fermentable carbohydrates. This way, an acidosis should not be a frequent problem in ruminants. However, prolonged periods of excessively decreased rumen pH are still a concern in dairy cows. It raises a question, why the regulation of feed intake by postingestive feedback does not help to maintain stable rumen environment in dairy cows?


2012 ◽  
Vol 57 (No. 9) ◽  
pp. 410-419 ◽  
Author(s):  
J. Čermáková ◽  
V. Kudrna ◽  
J. Illek ◽  
K. Blažková ◽  
J. Haman

The objective the present study was to determine the influence of a supplemental methionine analogue, the isopropyl ester of 2-hydroxy-4-(methylthio)-butanoic acid, commercially available as MetaSmart<sup>TM</sup>, on lactation performance, particularly milk protein production. The effects of this preparation were compared with those of a rumen-protected form of methionine, marketed as Smartamine<sup>TM</sup> M. Experiments were conducted according to a 3 &times; 3 Latin square design and included 30 high-yielding dairy cows (22&nbsp;Holstein and 8 Czech Fleckvieh) randomly allocated to three balanced groups. Cows were fed a basal diet based on maize silage, lucerne silage, lucerne hay, fresh brewer&rsquo;s grains, and a concentrate mixture in the form of a total mixed ration ad libitum. The diet M was supplemented with MetaSmart<sup>TM</sup> (42.5 g/day) and diet S was supplemented with Smartamine<sup>TM</sup> M (19 g/day), while control diet C contained solvent-extracted soybean meal, which was added to achieve required levels of dietary protein. Each period lasted four weeks in total, including three preliminary weeks and one experimental week during which samples of milk and tail vein blood were taken. Supplementation of MetaSmart<sup>TM</sup> decreased dry matter intake of cows (18.96&nbsp;kg) in contrast to the diet containing Smartamine<sup>TM</sup> M, for which dry matter intake was the highest (20.48 kg; P&nbsp;&lt; 0.001). Despite decreased dry matter intake, the highest average milk yields were recorded for cows supplemented with MetaSmart<sup>TM </sup>(31.34 kg), which produced by approximately 1.14&nbsp;kg (P &lt; 0.001) and 0.78&nbsp;kg (P &lt; 0.01) more milk than cows fed diets C and S, respectively. As expressed by greater ratios milk/DMI, FCM/DMI, and ECM/DMI, the feed efficiency was improved in cows supplemented with MetaSmart<sup>TM</sup>.Both MetaSmart<sup>TM </sup>and Smartamine<sup>TM</sup> M dietary supplementation increased milk yield, milk protein concentrations, and yields and increased the prevalence of &beta;-casein fraction in milk protein. &nbsp;


2010 ◽  
Vol 77 (3) ◽  
pp. 376-384 ◽  
Author(s):  
Ousama AlZahal ◽  
Mamun M Or-Rashid ◽  
Sabrina L Greenwood ◽  
Brian W McBride

The objective of this study was to investigate the effect of ruminal infusion of soybean oil (SBO) with either a moderate- or high-forage diet on fat concentration, yield and composition in milk from dairy cows. Six rumen-fistulated Holstein dairy cows (639±51 kg body weight, 140±59 days in milk) were used in the study. Cows were randomly assigned to one of two dietary treatments, a high forage:concentrate (HFC, 74:26) or a moderate forage:concentrate (MFC, 56:44) total mixed ration. Cows were fed at 08.00 and 13.00 h and pulse-dosed ruminally at 13.00 h over a 10-min duration with 2% of diet dry matter of SBO. Ruminal pH was recorded continuously. Cows receiving the MFC treatment had lower daily mean ruminal pH and ruminal pH was below 6·0 for a longer duration compared with the HFC treatment (640 vs. 262 min/d,P<0·05). Cows receiving the MFC treatment had a greater reduction (diet by week interaction,P<0·05) in milk fat concentration and yield than cows receiving the HFC treatment (42 vs. 22% and 45 vs. 21%, respectively). Additionally, cows receiving the MFC diet had a greater reduction in milk fat concentration (g/100 g FA) of FA <C16 (14 vs. 8%), and a greater increase in concentration of FA >C16 (17 vs. 9%),trans-10 18:1 (159 vs. 21%) andtrans-9,cis-11 conjugated linoleic acid (121 vs. 55%) (P<0·05) compared with cows receiving the HFC diet. This study demonstrated that cows fed the MFC diet had lower ruminal pH and showed a greater rate of milk fat depression when infused with SBO.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1658
Author(s):  
Jan C. Plaizier ◽  
Anne-Mette Danscher ◽  
Paula A. Azevedo ◽  
Hooman Derakhshani ◽  
Pia H. Andersen ◽  
...  

The effects of a subacute ruminal acidosis (SARA) challenge on the composition of epimural and mucosa-associated bacterial communities throughout the digestive tract were determined in eight non-lactating Holstein cows. Treatments included feeding a control diet containing 19.6% dry matter (DM) starch and a SARA-challenge diet containing 33.3% DM starch for two days after a 4-day grain step-up. Subsequently, epithelial samples from the rumen and mucosa samples from the duodenum, proximal, middle and distal jejunum, ileum, cecum and colon were collected. Extracted DNA from these samples were analyzed using MiSeq Illumina sequencing of the V4 region of the 16S rRNA gene. Distinct clustering patterns for each diet existed for all sites. The SARA challenge decreased microbial diversity at all sites, with the exception of the middle jejunum. The SARA challenge also affected the relative abundances of several major phyla and genera at all sites but the magnitude of these effects differed among sites. In the rumen and colon, the largest effects were an increase in the relative abundance of Firmicutes and a reduction of Bacteroidetes. In the small intestine, the largest effect was an increase in the relative abundance of Actinobacteria. The grain-based SARA challenge conducted in this study did not only affect the composition and cause dysbiosis of epimural microbiota in the rumen, it also affected the mucosa-associated microbiota in the intestines. To assess the extent of this dysbiosis, its effects on the functionality of these microbiota must be determined in future.


2021 ◽  
Vol 9 (3) ◽  
pp. 632
Author(s):  
Ying Zhang ◽  
Chao Wang ◽  
Along Peng ◽  
Hao Zhang ◽  
Hongrong Wang

Subacute ruminal acidosis (SARA) is often caused by feeding a high-concentrate diet in intensive ruminant production. Although previous studies have shown that dietary thiamine supplementation can effectively increase rumen pH and modify rumen fermentation, the effect of thiamine supplementation on rumen carbohydrate-related microorganisms and enzymes in goats under SARA conditions remain unclear. Therefore, the objective of the present study was to investigate the effects of dietary thiamine supplementation on carbohydrate-associated microorganisms and enzymes in the rumen of Saanen goats fed high-concentrate diets. Nine healthy mid-lactating Saanen goats in parity 1 or 2 were randomly assigned into three treatments: A control diet (CON; concentrate:forage (30:70)), a high-concentrate diet (HC; concentrate:forage (70:30)), and a high-concentrate diet with 200 mg of thiamine/kg of DMI (HCT; concentrate:forage (70:30)). Compared with the HC group, dietary thiamine supplementation improved ruminal microbes associated with fiber, including Prevotella, Fibrobacter, Neocallimastix, and Piromyces (p < 0.05). In addition, an increase in the relative abundance of enzymes involved in both fiber degradation and starch degradation, such as CBM16, GH3, and GH97, was observed in the HCT treatment. (p < 0.05). Thus, thiamine supplementation can improve carbohydrate metabolism by increasing the abundance of the microorganisms and enzymes involved in carbohydrate degradation. In conclusion, this study revealed the relationship between ruminal microbiota and enzymes, and these findings contributed to solving the problems arising from the high-concentrate feeding in ruminant production and to providing a new perspective on ruminant health.


Sign in / Sign up

Export Citation Format

Share Document