Canola screenings as a fiber source in barley-based feedlot diets: effects on rumen fermentation and performance of steers

2000 ◽  
Vol 80 (1) ◽  
pp. 161-168 ◽  
Author(s):  
S. J. Pylot ◽  
J. J. McKinnon ◽  
T. A. McAllister ◽  
A. F. Mustafa ◽  
J. Popp ◽  
...  

Two experiments were conducted to determine the feeding value of canola screenings in combination with barley grain for beef steers. Four dietary treatments were used. These included canola screenings:barley grain ratios of 100:0; 75:25, 50:50, and 25:75 (as-fed basis). In a metabolic trial, the effects of dietary treatment on ruminal fermentation parameters were determined in a 4 × 4 Latin square design experiment using four ruminally fistulated steers. In a production trial, 66 individually fed steers were used in an 83-d finishing trial to determine the performance and carcass characteristics of feedlot cattle fed different levels of canola screenings. A barley grain/barley silage-based control diet was also fed for comparison purposes. Ruminal pH decreased (P < 0.05) while total volatile fatty acid concentrations increased (P < 0.05) as the level of barley grain in the diet increased. Ruminal NH3–N followed a pattern (P < 0.05) similar to that of pH. Inclusion level of canola screenings had no effect on DM intake. However, ADG and feed efficiency increased (P < 0.05) as the level of barley grain in the diet increased. Increasing the level of barley grain in the finishing diet decreased (P < 0.05) lean meat yield and increased (P < 0.05) carcass fat. It was concluded that canola screenings can be included as a source of fiber in barley-based diets. However, levels in excess of 500 g kg−1 reduced the performance of feedlot steers. Performance and cost of gain with 250 and 500 g kg−1 canola screenings in barley-based finishing diets were comparable with those fed an 800 g kg−1 barley grain and 200 g kg−1 barley silage diet. Key words: Canola screenings, ruminal fermentation, feedlot steer performance

2009 ◽  
Vol 89 (2) ◽  
pp. 263-271 ◽  
Author(s):  
J. Baah ◽  
Y. Wang ◽  
T A McAllister

The effect of a direct-fed microbial (DFM) poduct containing a mixed culture of Lactobacillus casei and L. lactis on in vitro ruminal fermentation of barley-grain/barley-silage-based backgrounding and finishing diets and on growth performance and carcass characteristics of feedlot cattle was evaluated during backgrounding (84 d) and finishing (140 d) of 100 Hereford × Angus steers (initial body weight = 280 ± 15.5 kg). The inclusion rates of DFM in the in vitro study were 4, 8, 12 and 16 million colony forming units (CFU) of lactic acid bacteria (LAB) kg-1 DM of substrate. Total in vitro volatile fatty acids (VFA) production increased at 6 and 12 h of incubation (P < 0.01; linear response) when the backgrounding diet was supplemented with DFM. Dry matter digestibility and VFA production also increased (P < 0.05) during a 12-h fermentation of the finishing diet. Steers were randomly allocated to one of four dietary treatments that comprised feeding DFM tp provide 0 (control), 4 × 107, 8 × 107, or 12 × 107 CFU kg-1 diet DM. Average daily gain (ADG, kg) and feed efficiency (G:F; kg gain kg-1 DM consumed) of steers improved (P = 0.002 and 0.001, respectively) as a result of feeding DFM during the backgrounding period, but not during the finishing period. Saleable meat and rib eye area decreased (P = 0.038, linear; and P = 0.041, quadratic) with DFM supplementation. The results indicated that supplementing barley-grain/barley-silage-based feedlot cattle diets with 12 × 107 CFU of the mixed culture of lactobacilli used in these studies could improve ruminal fermentation, ADG and G:F in backgrounding feedlot steers. However, supplementation during the finishing period may not be warranted in terms of growth performance and carcass characteristics. Differences in the microbial ecology of the intestinal tract as a result of differences in diet composition may account for the varied response between the backgrounding and finishing periods.Key words: Beef cattle, direct-fed microbial, growth performance, Lactobacillus casei, Lactobacillus lactis, ruminal fermentation


2019 ◽  
Vol 97 (Supplement_2) ◽  
pp. 141-142
Author(s):  
Jerad R Jaborek ◽  
Alejandro E Relling

Abstract The presence of reactive oxygen species has been associated with the differentiation of pre-adipocytes into lipid filled mature adipocytes in vitro. We hypothesized offering a diet without supplemental antioxidant minerals (Cu, Mg, Zn, and Se) to steers during the growing phase, a time when intramuscular fat cells are believed to be proliferating, would promote differentiation of pre-adipocytes, leading to more desirable marbling scores compared with steers supplemented to meet their mineral requirements. After adaptation to the feedlot, 168 Sim-Angus steers were divided into four weight blocks, placed in one of twenty-four pens, and randomly assigned a dietary treatment. Dietary treatments were: 1) no supplemental (Cu, Mg, Zn, and Se) minerals; 2) control diet with supplemented minerals to meet the mineral requirements of growing beef steers (NRC, 2016); 3) Cu, Mg, Zn, and Se concentrations supplemented at twice the concentration of the control diet. After dietary treatments were applied for the 4-wk long growing phase, steers were offered a common finishing diet until reaching a similar backfat thickness until harvest. Feedlot performance and carcass data were analyzed in SAS with pen as the experimental unit in the following model: Yij = μ+Di+wj+eij, where Di was the fixed effect of diet, wj was the random effect of weight block, and eij was the random error. No significant (P > 0.35) treatment effects were found for feedlot performance and carcass measurements. The feedstuffs in the basal diet may have contained sufficient concentrations of antioxidant minerals to meet the mineral requirements of the steers and mask differences in marbling. Additionally, offering a similar diet during the finishing period may have resulted in compensatory marbling growth, which offset marbling differences after the growing phase and resulted in uniform marbling accumulation across dietary treatments.


2020 ◽  
Vol 98 (10) ◽  
Author(s):  
Karen M Koenig ◽  
Gwinyai E Chibisa ◽  
Gregory B Penner ◽  
Karen A Beauchemin

Abstract High grain diets are fed to finishing beef cattle to maximize animal performance in a cost-effective manner. However, a small amount of roughage is incorporated in finishing diets to help prevent ruminal acidosis, although few studies have examined optimum roughage inclusion level in barley-based diets. The objective of the study was to evaluate the effects of roughage proportion in barley-based finishing diets on growth performance, feeding behavior, and carcass traits of feedlot cattle. Crossbred beef steers (n = 160; mean body weight ± SD, 349.7 ± 21.4 kg) were allocated to 20 pens that were assigned randomly to four dietary treatments (five pens of eight steers per treatment). The treatment diets contained barley silage at 0%, 4%, 8%, and 12% of dietary dry matter (DM). The remainder of the diets (DM basis) consisted of 80%, 76%, 72%, and 68% barley grain, respectively, 15% corn dried distiller’s grains, 5% mineral and vitamin supplement, and 32 mg monensin/kg diet DM. The diets were fed as total mixed rations for ad libitum intake (minimum of 5% refusal) once per day. Cattle were weighed on 2 consecutive days at the start and end of the experiment and on 1 d every 3 wk throughout the experiment (124 d). Two pens for each treatment group were equipped with an electronic feeding system (GrowSafe Systems Ltd., Calgary, Alberta) to monitor feed intake and feeding behavior of individual cattle. The data for dry matter intake (DMI), average daily gain (ADG), gain:feed (G:F) ratio, and carcass traits were analyzed as a completely randomized design with fixed effect of barley silage proportion and pen replicate as experimental unit. Feeding behavior data were analyzed similarly, but with animal as experimental unit. Averaged over the study, DMI increased linearly (11.1, 11.3, 11.7, 11.8 kg/d; P = 0.001) as barley silage proportion increased from 0%, 4%, 8%, and 12% of DM, but ADG was not affected (carcass-adjusted,1.90, 1.85, 1.87, 1.89 kg/d; P ≥ 0.30). Consequently, G:F ratio decreased linearly (carcass-adjusted, 168.9, 163.8, 158.5, 160.6 g/kg DMI; P = 0.023). When averaged over the study, proportion of barley silage in the diet had no linear or quadratic effects (P &gt; 0.10) on meal frequency, duration of meals, intermeal duration, or meal size, but eating rate decreased linearly with increasing silage proportion (P = 0.008). There was no diet effect on liver abscesses (P ≥ 0.92), and effects on carcass characteristics were minor or nonexistent. We conclude that increasing the proportion of barley silage in a feedlot finishing diet at the expense of barley grain to minimize the incidence of ruminal acidosis may decrease feed conversion efficiency.


2013 ◽  
Vol 93 (2) ◽  
pp. 261-268 ◽  
Author(s):  
N. Schlau ◽  
L. Duineveld ◽  
W. Z. Yang ◽  
T. A. McAllister ◽  
M. Oba

Schlau, N., Duineveld, L., Yang, W. Z., McAllister, T. A. and Oba, M. 2013. Precision processing barley grain did not affect productivity of lactating dairy cows. Can. J. Anim. Sci. 93: 261–268. This study evaluated the effects of precision processing (PP; processing based on kernel size) barley grain on ruminal fermentation and productivity of lactating dairy cows. Twenty multiparous Holstein cows, including eight ruminally cannulated cows, were used in a replicated 4×4 Latin square design with 21-d periods. Diets contained light barley grain processed precisely using a narrow roller setting (LB), heavy barley processed precisely using a wide roller setting (HB), processed HB and LB mixed at equal proportions (PP), or equal parts of light and heavy barley grain processed at a single narrow roller setting (CON). All diets consisted of 40% barley grain, 40% barley silage, and 20% of a supplement premix. Comparisons were made between LB and HB to evaluate the effect of barley quality, and between PP and CON to evaluate the effect of precision processing. Dry matter intake, sorting index, ruminal fermentation characteristics, and nutrient digestibility were not affected by diet. In addition, milk yield and concentrations of milk fat, protein, and lactose were not different, although milk urea nitrogen concentration was greater for PP vs. CON and for LB vs. HB. These results suggest that precision processing barley grain based on kernel size may not drastically affect ruminal fermentation and milk production in lactating dairy cows.


2007 ◽  
Vol 87 (1) ◽  
pp. 15-27 ◽  
Author(s):  
J. A. Basarab ◽  
J. L. Aalhus ◽  
M. A. Shah ◽  
P. S. Mir ◽  
V. S. Baron ◽  
...  

This study examined the effects of whole sunflower seed (WSS) supplementation on production parameters, carcass traits, and organoleptic characteristics of beef from steers slaughtered directly off pasture or after receiving a finishing diet. Ninety-six yearling steers (410 kg; SD = 44 kg) were randomly allocated to three pasture (P) dietary treatments: (1) supplemented with P-WSS (n = 48), (2) supplemented with cracked barley grain (P-BAR, n = 24), and (3) not supplemented (P-CON, n = 24). Steers rotationally grazed meadow bromegrass-alfalfa pasture for 66 d during the summer and consumed WSS and BAR at a rate of 0.75 and 1.79 kg head-1 d-1, respectively. At the end of summer grazing half the steers from each pasture dietary treatment group were moved to a feedlot (F) where they were fed high barley-based finishing diets. The remaining 48 steers continued with their dietary treatments on stockpiled pasture for an additional 47 d (SD = 11) until they were slaughtered directly off pasture. In the feedlot, half the steers from each pasture dietary treatment were fed either a control [83% rolled barley, 10% alfalfa hay, 5% barley silage, 1% molasses and 1% vitamin/mineral mix on a dry matter (DM) basis; F-CON] or a F-WSS diet (68% rolled barley, 15% WSS, 10% alfalfa hay, 5% barley silage, 1% molasses and 1% vitamin/mineral mix on a DM basis) for a further 94 d until slaughter. Supplementation of BAR on pasture increased average daily gain (ADG), while supplementation of WSS had no effect on ADG compared with no supplementation (0.73 vs. 0.58 vs. 0.55 kg d-1, P = 0.023). Inclusion of 15% WSS in the finishing diet decreased ADG (1.46 vs. 1.72 kg d-1, P = 0.038), dry matter intake (DMI) (11.6 vs. 12.6 kg d-1, P = 0.058) and had no effect on feed to gain ratio (8.0 vs. 7.4 kg d-1, P = 0.160). Provision of WSS on pasture or in finishing diets had no effect on carcass traits and organoleptic characteristics of beef from steers slaughtered directly off pasture or after receiving a finishing diet. Slaughtering steers directly off pasture, regardless of pasture dietary treatment, adversely affected most carcass merit, meat quality and retail appearance and acceptability parameters compared with steers finished on a high-barley grain diet. These results indicate that increasing the dietary polyunsaturated fatty acids threefold in the pasture dietary treatment or greater than eightfold in the finishing diets had a small negative effect on animal growth rate and no adverse effect on carcass merit, meat quality and retail acceptability. Key words: Polyunsaturated fatty acids, retail acceptability, beef cattle


2019 ◽  
Vol 99 (2) ◽  
pp. 268-282
Author(s):  
Jayakrishnan Nair ◽  
David Christensen ◽  
Peiqiang Yu ◽  
Aaron D. Beattie ◽  
Tim McAllister ◽  
...  

Two metabolism studies were conducted to evaluate the effect of variety and level of inclusion of barley silage on ruminal fermentation and total tract nutrient digestibility using beef heifers fed backgrounding (Study 1) and finishing (Study 2) diets. Both studies were 4 × 4 Latin square designs with a 2 × 2 factorial arrangement (barley varieties, CDC Cowboy and Xena; levels of inclusion, LOW and HIGH). Barley varieties did not vary in 30 h neutral detergent fiber (NDF) digestibility and averaged 37.1% ± 1.86% (% of NDF) across varieties. Heifers fed CDC Cowboy had greater (P = 0.05) mean ruminal pH and a lower (P = 0.01) duration under pH 5.8 relative to those fed Xena in Study 1, whereas heifers fed HIGH-silage diets had lower (P = 0.05) duration under ruminal pH 5.8 than those fed LOW-silage diets in Study 2. Variety of barley had minimal impact on ruminal fermentation and total tract nutrient digestibility in heifers fed barley silage, although high NDF content decreased energy intake. High NDF barley varieties and greater inclusion levels also increased ruminal pH which may improve total tract fiber digestibility in heifers fed finishing diets.


2013 ◽  
Vol 93 (2) ◽  
pp. 251-260 ◽  
Author(s):  
W. Z. Yang ◽  
M. Oba ◽  
T. A. McAllister

Yang, W. Z., Oba, M. and McAllister, T. A. 2013. Quality and precision processing of barley grain affected intake and digestibility of dry matter in feedlot steers. Can. J. Anim. Sci. 93: 251–260. A study was conducted to determine the impact of barley quality and precision processing to account for the impact of variable kernel uniformity on ruminal pH and fermentation, and digestibility in the digestive tract of steers. Eight ruminally cannulated steers were used in a replicated 4×4 Latin square experiment. The four diets consisted of light-weight barley (LB) precision-processed with roller setting based on kernel size; heavy-weight barley (HB) precision-processed; LB and HB grain mixed equal parts then processed at a single roller setting (CON); or LB and HB precision-processed and mixed equal parts (PP). The diets consisted of 10% barley silage and 90% concentrate [dry matter (DM) basis]. Dry matter intake by steers fed LB was greater (P=0.04) than by steers fed HB. Intakes of DM and other nutrients were greater (P=0.04) for steers fed PP than for steers fed CON. There were no differences (P>0.14) in ruminal pH and fermentation among treatments. Digestibility of DM in the total digestive tract tended (P=0.06) to be less with LB than with HB. Precision processing increased digestibility of crude proteion (P=0.04) and acid detergent fibre (P=0.06) resulting in a trend (P=0.10) towards increasing organic matter digestibility as compared with CON. The results suggest that screening of blended barley into more uniform fractions and precision processing of each fraction could increase intake of digestible nutrients for feedlot cattle.


Author(s):  
Catherine L Lockard ◽  
Caleb G Lockard ◽  
Wyatt N Smith ◽  
Kendall J Karr ◽  
Ben P Holland ◽  
...  

Abstract Six ruminally cannulated steers (average BW = 791 + 71 kg) were used in a replicated 3 × 3 Latin square experiment to determine the effects of roughage type on rumination, fiber mat characteristics, and rumen fermentation variables. Three roughages were included at 7% (DM basis) in a steam flaked corn-based diet; cotton burrs (CB), wheat silage (WS), or corn stalks (CS). Steers were fitted with a sensory collar to record rumination behaviors in 2-h intervals at the beginning of the experiment. Each 30-d period consisted of a 7-d of recovery, 14-d of diet adaptation, 7-d of rumination data collection (daily and bi-hourly average rumination), 1-d of rumen fluid collection, and 1-d of rumen evacuations. In situ degradation of individual roughages was determined for 4-d after period 3 evacuations. During rumen evacuations, ruminal contents were removed; the rumen fiber mat (RF) was separated from the liquid portion with a 2 mm sieve, weighed, and a subsample was dried. Data were analyzed using the MIXED procedure of SAS with steer as the experimental unit and roughage (CB, WS, and CS) as the main effect. Dry matter intake (DMI) was not different for CB and WS (P = 0.25) and greatest for steers consuming CS diet (P  &lt; 0.01). Roughage type did not influence the weight of the RF dry matter (%; DM; P = 0.92), RF weight (P = 0.69), or RF:DMI ratio (P = 0.29). Daily rumination (min/d) did not differ among roughages (P = 0.40), but min of rumination/kg of DMI was greatest for CS (18.0 min), min/kg of NDF was greatest for WS (89.8 min; P = 0.02), and min/kg of peNDF was greatest for CS (132.4 min; P  &lt; 0.01). Wheat silage had the greatest percentage of soluble DM and CB-R and CS-R (P  &lt; 0.01) had the greatest ruminal degraded DM fraction. Rumen fiber mat did not differ for roughages, although rumination min/kg of DMI and peNDF was greatest for steers consuming CS and WS. In situ degradation determined that CB-R and CS-R had the greatest percentage of ruminal degraded DM. Based on the objective of the experiment, roughage type did not influence daily rumination or fiber mat characteristics.


2011 ◽  
Vol 91 (1) ◽  
pp. 147-167 ◽  
Author(s):  
Riazuddin Mohammed ◽  
Reza Khorasani ◽  
Laksiri Goonewardene ◽  
John Kramer ◽  
John Kennelly

Mohammed, R., Khorasani, R. G., Goonewardene, L. A., Kramer, J. K. G. and Kennelly, J. J. 2011. Persistency of milk trans-18:1 isomers and rumenic acid in Holstein cows over a full lactation. Can. J. Anim. Sci. 91: 147–167. A long-term lactation study was undertaken to determine whether the previously reported short-term persistency in vaccenic acid [VA; trans(t)11-18:1] and rumenic acid (RA) could be maintained. To test this hypothesis, 24 Holstein cows were allotted to two experimental diets (control and test) from 2 wk before calving until they were 270 d in milk (DIM). The test diet was similar to the control diet, but supplemented with sunflower seed (11.2% diet DM), fish oil (0.5%) and monensin (22 mg/kg DM) by replacing an equivalent amount of barley grain. The forage: concentrate ratio was 50:50 (DM basis) with 35% barley silage and 15% alfalfa hay. Milk was sampled every fortnight from the start of lactation until cows were 270 DIM. Data obtained were averaged into three equal periods of 90 d each, representing three stages of lactation (SOL): early-lactation (EL), mid-lactation (ML) and late-lactation (LL). Dry matter intakes were not different between treatments with greater intakes observed during ML than during EL or LL. Milk yield was not different between treatments and decreased with increasing DIM. Milk fat content and yield showed interaction between treatment and SOL with lower values observed for the test diet than control diet during EL and ML. De novo synthesized fatty acids (4:0–15:0), 16:0–16:1 and preformed fatty acids (17:0 and above) showed interaction between treatment and SOL with the former two being greater for control diet than test diet and the latter greater for the test diet than control diet within each SOL. Milk t10-18:1 (% fatty acid methyl esters, FAME) was greater for the test diet compared with control diet (4.38 vs. 1.32) and was greater during ML (3.79) than during EL (2.38) or LL (2.38). Milk VA and RA showed interactions between treatment and SOL with greater values observed for the test diet than the control diet within each SOL. When analyzed by treatment, milk VA was not different across SOL for both diets. Milk RA was not different across SOL for the test diet, but was different for the control diet; it was lower during EL than during ML. Step-wise regression analysis revealed that the variability in milk RA for the control diet (P<0.01; R2=0.97) was determined by VA (70%) and RA/VA (27%); and for the test diet (P<0.01; R2=0.987) by VA (88.7%), RA/VA (5%) and t10-18:1 (3.8%). Desaturase index based on RA/VA showed an interaction between treatment and SOL; it was greater for the control diet than the test diet within each SOL. Overall findings revealed that the differences in milk t10- and VA across SOL reflected possible differences in starch and PUFA intakes, respectively. Differences in milk RA across SOL for the control diet could be attributed to possible differences in mammary desaturase activity based on differences in RA/VA.


2019 ◽  
Vol 97 (Supplement_3) ◽  
pp. 220-220
Author(s):  
Cody Ream ◽  
Allison V Stevens ◽  
Gwinyai Chibisa

Abstract This study examined the effects of altering ruminal fermentable carbohydrate (RFC) supply by feeding different amounts of corn and wheat in finishing cattle diets containing 15% corn dried distillers grains [DDGS; dry matter (DM) basis] on ruminal fermentation characteristics and nitrogen (N) utilization. Six ruminally-cannulated crossbred heifers were used in a replicated 3 × 3 Latin square design with 28 d periods. Dietary treatments were either corn (73% of diet DM; CON), 53:20 corn:wheat blend (20W) or 33:40 corn:wheat blend (40W) as the major fermentable carbohydrate source. Diets were isonitrogenous (12% CP; DM basis). Feed intake was measured daily. Indwelling pH logger were used to measure ruminal pH (d 22 to 28) and ruminal fluid was collected from d 26 to 28 to determine fermentation characteristics, as were feces and urine to measure N excretion. Data was analyzed using PROC MIXED in SAS. Dry matter and N intake tended to be lower (P ≤ 0.07) for heifers fed the 40W compared to the CON and 20W diets. There was no diet effect (P = 0.15) on total VFA concentration; however, the duration and area for pH &lt; 5.5 tended to be longer (P = 0.07) and greater (P = 0.096), respectively, for heifers fed the 20W and 40W compared to the CON diet. There was no diet effect (P ≥ 0.44) on ruminal ammonia concentration and total urine N excretion (g and % of N intake). However, urine urea N (UUN) excretion as a percentage of total urine N tended to be lower (P = 0.05) in heifers fed the 20W and 40W compared to the CON diet. In summary, although altering RFC supply by feeding increasing amounts of wheat resulted in a decrease in UUN excretion, it also caused a decrease in ruminal pH that possibly compromised DM intake.


Sign in / Sign up

Export Citation Format

Share Document